Glacial Fluctuation and Vegetation Succession on Tyndall Glacier, Mt Kenya

Size: px
Start display at page:

Download "Glacial Fluctuation and Vegetation Succession on Tyndall Glacier, Mt Kenya"

Transcription

1 Glacial Fluctuation and Vegetation Succession on Tyndall Glacier, Mt Kenya Author(s): Kazuharu Mizuno Source: Mountain Research and Development, 25(1): Published By: International Mountain Society URL: %5D2.0.CO%3B2 BioOne ( is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne s Terms of Use, available at Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research.

2 Mountain Research and Development Vol 25 No 1 Feb 2005: Kazuharu Mizuno Glacial Fluctuation and Vegetation Succession on Tyndall Glacier, Mt Kenya Dramatic changes are taking place in the glacier-covered high mountains of Africa. The glacial area on Mt Kilimanjaro is now only half as large as it was in the 1970s. The Tyndall Glacier on Mt Kenya, which retreated at approximately 3 m/yr from 1958 to 1997, retreated at about 10 m/yr from 1997 to Pioneer species such as Senecio keniophytum, Arabis alpina, mosses, lichen, and Agrostis trachyphylla have advanced over areas formerly covered by the glacier. The rate at which this vegetation migrated up the former bed of the glacier ( m/yr from 1958 to 1997) is similar to the rate of glacial retreat (2.9 m/yr). In the interval from 1997 to 2002, pioneer species advanced at a rapid rate of m/yr, while the glacier retreated at 9.8 m/yr. Rapid glacial retreat has been accompanied by rapid colonization by plants. Pioneer species improve soil conditions and make habitat suitable for other plants. If warming continues, alpine plant cover may extend all the way to mountain summits, and then eventually diminish as trees colonize the areas formerly occupied by alpine plants. Larger woody plants such as Senecio keniodendron and Lobelia telekii, which showed no obvious advance prior to 1997, have advanced quickly since that year. Keywords: Vegetation; deglaciation; global warming; environmental change; alpine zone; Africa. Peer-reviewed: June 2004 Accepted: July 2004 Introduction Vegetation at glacier fronts is commonly affected by glacial fluctuations (Coe 1967; Spence 1989; Mizuno 1998). Coe (1967) described vegetation zonation, plant colonization, and the distribution of individual plant species on the slopes below the Tyndall and Lewis glaciers. Spence (1989) analyzed the advance of plant communities in response to the retreat of the Tyndall and Lewis glaciers for the period 1958 to Mizuno (1998) addressed plant communities responses to more recent glacial retreat by conducting field research in 1992, 1994, 1996, and These studies illustrated the link between ice retreat and plant colonization near the Tyndall and Lewis glaciers. In addition, till age and substrate stability are critical controls on vegetation patterns around the glaciers (Mizuno 1998). Numerous studies have been carried out on the glaciers of Mt Kenya (Gregory 1894, 1900; Mackinder 1900; Troll and Wien 1949; Charnley 1959; Coe 1964; Kruss and Hastenrath 1983; Hastenrath 1983a, 1983b, 1984, 1991). Many of these studies dealt with glacial fluctuations and deposits (Baker 1967; Mahaney 1979, 1982, 1984, 1989, 1990). Recently, mountain glaciers in Africa have been retreating at an accelerated rate (Hastenrath 1997; Thompson et al 2002). The present study focuses on glacial fluctuations for the period 1997 to It clarifies the response of plant communities to recent glacier retreat, and discusses the effects of glacial retreat on ecosystems. The habitats of large woody plants such as Senecio keniodendron and Lobelia telekii, which are characteristic of tropical high mountains, are examined. Study area Mt Kenya is an isolated, extinct, denuded volcano that lies on the equator (0 6 S, E), approximately 150 km NNE of Nairobi. Its summit, Batian, rises to 5199 m. The mountain was formed by intermittent volcanic eruptions between 3.1 and 2.6 million years ago (Bhatt 1991), and the volcanic plug has been dated to 2.64 million years ago (Everden and Curtis 1965; Mahaney 1990). Rocks of the volcanic massif consist of basalt, phonolite, kenytes, agglomerates, trachyte, and syenite (Baker 1967; Baker et al 1972; Bhatt 1991; Mahaney 1990). The Tyndall Glacier is the second largest glacier on Mt Kenya, after the Lewis Glacier. Fluctuations of these glaciers have been recorded in detail (Gregory 1894, 1896, 1900, 1921; Mackinder 1900, 1901; McGregor Ross 1911; Dutton 1929; Light 1941; Howard 1955; Hastenrath 1984; Mahaney 1990). Mahaney (1984, 1990) subdivided neoglacial deposits into 2 advances (the Tyndall advance and the Lewis advance) on the basis of several relative dating (RD) criteria, including topographic position, weathering characteristics, and degree of soil profile expression. The Lewis and Tyndall moraines formed in front of the Tyndall Glacier (Figure 1). The Lewis Till (the Lewis Moraine, ca 100 BP) and the Tyndall Till (the Tyndall Moraine, ca 900 BP) are considered late Holocene in age, based on soil development and weathering features (Spence and Mahaney 1988; Mahaney 1989, 1990; Mizuno 1998). The Tyndall Moraine is divided into Tyndall Moraine I and Tyndall Moraine II, on the basis of topographic position, weathering characteristics, and relative soil development (Mizuno 1998, 2003a). The elevations at which the annual minimum, mean, and maximum temperatures of the free atmosphere in East Africa are 0 C are approximately 3500 m, 4750 m, and 6000 m, respectively (Hastenrath 1991).

3 Research FIGURE 1 Geomorphological map for the environs of the Tyndall Glacier, Mt Kenya. Margins of the Tyndall Glacier for 1919, 1926 and 1963 are from Hastenrath (1983a); for 1950 and 1958 from Charnley (1959). Lewis Moraine (Lewis Till) and Tyndall Moraine (Tyndall Till) are from Mahaney (1982, 1987) and Mahaney and Spence (1989). (Map by Kazuharu Mizuno, based on Hastenrath et al 1989) 69 The precipitation is southeasterly maximum, resulting from the classical monsoon, and secondary maximum on the western side (Mahaney 1990). Annual precipitation is about 2500 mm per year at 2250 m on the southeast slopes of Mt Kenya, declining to less than 1000 mm per year at the same altitude on the north slope (Hastenrath 1991; Mahaney 1984). Annual rainfall is highest between 2500 and 3000 m on the south, west, and east slopes, and decreases towards the peak (<900 mm at m). Above 4500 m most of the precipitation falls in the form of snow and hail. Vegetation on Mt Kenya has been classified in the Alpine Belt (>3600 m), the Ericaceous Belt (3600 to 3400 m on the south slope, 2900 m on the north slope), and the Montane Forest Belt (<3400 m; Hastenrath 1984). The vertical distribution of Senecio keniodendron and Senecio brassica is used to distinguish the upper and lower alpine zones, although there is considerable overlap in their distribution (Hedberg 1951). In the lower alpine zone, tussock grasses, Senecio brassica, and Lobelia keniensis occupy the wetter areas, and Alchemilletum predominates in dry areas. In the upper alpine zone, Senecio keniodendron is present up to 4500 m, together with Carex monostachya, Agrostis spp, Cardus platyphyllus, Arabis alpina, Senecio keniophytum, and Lobelia telekii. Methodology The position of the Tyndall Glacier s snout was established by measuring the distance from a sign at Tyndall Tarn. The leading edge of plant cover was measured from the terminus of the glacier. Moraine positions were compiled on a topographic map (The Glaciers of Mount Kenya, 1:5000, Hastenrath et al 1989) from field surveys and aerial photographs (1:50,000). Bones and skin of leopard remains were dated by accelerator mass spectrometry (AMS) in the Dating and Material Research Center of Nagoya University (Mizuno and Nakamura 1999). Plant communities and their environments were surveyed at 9 sites (Plots 1 to 9, each 2 m 2 m and representing different terrain conditions). At each survey site, surface materials, land surface stability, lichen coverage on exposed rock, vegetation coverage, and species composition were investigated. The particle sizes in the surface rubble layer were measured by the long axis of rubble (30 to 100 measurements at each quadrant). Substrate stability was established using the deflection of a painted line. Lichen cover was used as a cross check to identify stability and to estimate the elapsed time from glacier release. Lichen coverage is the percentage of the exposed part of the debris covered by lichen. Soil profiles were surveyed at 12 sites (Plots a to l). A till age for each plot was estimated using its distance from the glacier front and established glacial retreat rates [2.9 m/yr ( ); 3.8 m/yr ( 1958); Charnley 1959]. Habitats of large woody plants such as Senecio keniodendron and Lobelia telekii were investigated around Plot 6. The relationship between the clast size of surface material and the height of Senecio keniodendron and Lobelia telekii was studied at 2 sites (15 m 15 m): Plot A (4390 m, on Tyndall Moraine I) and Plot B (4390 m, on a debris flow and outwash slope). Results Fluctuation of the Tyndall Glacier and glacial topography on Mt Kenya Leopard remains were discovered from the snout of the Tyndall Glacier in 1997 (Figure 2). The upper half of the body of a leopard appeared from the upper surface of the ice. The remains, including skeletal material, spotted skin, and whiskers probably first emerged from the glacial ice in 1997, as they had not been discovered in Radiocarbon dating (AMS) of the leopard remains determined an age of approximately 900±100 BP (Table 1). This date corresponds to the time when the climate was cooling, and does not conflict with an interpreted cool interval that lasted until the 19th century (Dansgaard et al 1975). Hastenrath (1983b) estimated that representative residence time for ice in the

4 Kazuharu Mizuno 70 FIGURE 2A 2D Tyndall Glacier in 1992, 1997, 2002, and leopard remains discovered on the Tyndall Glacier in (Photos by Kazuharu Mizuno) A B C Lewis Glacier is a few centuries. Radiocarbon dating of leopard remains in the Tyndall Glacier is inconsistent with the time of the Lewis Glacier. The climate fluctuated between warm and cold periods prior to 100 BP, accompanied by moraine deposition. In the last 100 years, however, the Tyndall Glacier has retreated constantly and no new moraine material has been deposited. Figure 2 shows the extent of the Tyndall Glacier in 1992, 1997, and 2002, during which time it retreated rapidly. This very rapid rate of retreat from 1997 to 2002 (ca 10 m/yr) contrasts with an average rate of ca 3 m/yr for the period (Figure 3). D Plant succession in response to deglaciation Figure 3 shows changes in the position of the glacier front and the leading edge of each advancing plant species (arrow indicates speed of advance). For example, in 2002, no plants were present within 12 m of the glacier front, and Senecio keniophytum and Arabis alpina were in areas >12 m away from the glacier front. Moss and lichen were present at distances of 27 m and more. The first species to colonize new till was Senecio keniophytum, which advanced at an average rate of 2.7 m/yr from 1958 to 1984, and 2.1 m/yr from 1984 to These rates of advance are similar to the rate of glacial retreat (2.9 m/yr). Other pioneer species, such as Arabis alpina, moss, lichen, and Agrostis trachyphylla, advanced at rates between 2.1 m/yr and 4.6 m/yr in response to glacial retreat rates of 2.9 m/yr. Senecio keniophytum advanced at 8.8 m/yr and Arabis alpina advanced at 12.2 m/yr, in response to the glacial retreat of 9.8 m/yr for the interval from 1997 to Arabis alpina eventually overtook Senecio keniophytum: the front edge of the area containing Arabis alpina was m from the glacier front, whereas that of Senecio Mountain Research and Development Vol 25 No 1 Feb 2005

5 Research TABLE 1 14 C dates for the animal (leopard) discovered on Tyndall Glacier (Mizuno and Nakamura 1999). 71 Sample number Material 14 C data (yr BP) Calendar dates calibrated from 14 C ages by Calib ETH 1.5b 13 C PDB ( ) Laboratory code number (NUTA-) 1 Bone 973± AD 1200AD Bone 893± AD 1235AD Skin 879± AD 1291AD 5920 FIGURE 3 Glacial fluctuations and succession of alpine plants. The horizontal axis: distance (m) from the margin of Tyndall Glacier to the front of each plant distribution. The vertical axis: date (the length of the vertical axis indicates years). The arrows indicate movement of the glacial margin or the front of each plant distribution (the inclination of the arrow indicates speed of movement). keniophytum was m. Mosses and lichens advanced at a rate of 10.2 m/yr, and Agrostis trachyphylla also advanced at the rapid rate of 6.4 m/yr. Large woody plants such as Senecio keniodendron and Lobelia telekii, which did not advance prior to 1997, advanced rapidly at 17.2 m/yr and 16.0 m/yr respectively, from 1997 to Near the glacier, the earliest colonizing species, Senecio keniophytum, is sparse in the eastern area, which receives less solar radiation owing to the shade of the summit. This species prefers cracks in bedrock on convex slopes such as ridges or banks, because the fine material within the cracks retains water and the bedrock slope is stable. Plant succession and soil development Plants change the environments they colonize when they advance into areas formerly covered by glacial ice.

6 Kazuharu Mizuno 72 FIGURE 4 Soil profiles of plots (see Figure 1). Till ages (yr) of the plots are estimated from glacial retreat rates [2.9 m/yr ( ); 3.8 m/yr ( 1958); Charnley 1959]; the color codes are in Universal Color Language, level 3. Figure 4 shows the soil profile and till ages for the study plots, or the time elapsed since release from glacial ice. This age is estimated using the distance between the glacier front and each plot, and the glacial retreat rates [2.9 m/yr ( ); 3.8 m/yr ( )]. For example, the time since release from glacier ice at Plots a, b, and c (ie, the till ages) was estimated at 5 13 years. Soil near the glacier is sandy (loamy sand, sandy loam, and sand) with much fine gravel. Soils are immature and lack humus content, and thus exhibit dark grayish yellow (2.5Y4/2), grayish olive (5Y4/2), and yellowish gray (2.5Y4/1) colors. In the area closest to the ice front, only Senecio keniophytum grows abundantly. At Plot e, where 79 years have elapsed since glacial release, soil is fine-grained (eg, silty clay), and brownish-black (7.5YR2/2, 10YR2/2) owing to significant humus content. Soils of this type can support growth of the large woody plant Senecio keniodendron. Soils capable of supporting the growth of diverse plants develop in environments near the glacier front as a result of improvements made by the roots and humus of pioneer species. Dense growth of Senecio keniodendron, Lobelia telekii, and tussock grass was possible in areas where ice retreat took place ca 500 BP, judging by moraine location and the retreat rate of the glacier. At other sites, such as Plot i, few plants were growing in the sandy, yellowish-gray (2.5Y5/1) soil, despite a period of 92 years since glacial retreat, owing to substrate instability (Table 2). The maximum movement of land surface in the Lewis Moraine (Plot 4, Plot i) was 610 cm, from 1994 to 1996, and 3200 cm from 1994 to 2002 (Table 2). The air temperature changed from 0.2 C (8:00AM) to 5.4 C (3:00PM), and the soil temperature of bare ground (5 cm in depth) changed from 0.4 C (8:00AM) to 10.7 C (3:00PM) at Plot 4 on 5 August, 1994 (Mizuno 1998). Land surface is unstable due to daily active solifluction from freeze thaw. Mountain Research and Development Vol 25 No 1 Feb 2005

7 Research TABLE 2 Environments and composition of alpine plant communities at each plot (see Figure 1) around the Tyndall Glacier. Plot Till age (years) a) Landform Cirque bottom Talus Hollow Lewis Moraine Tyndall Moraine II Tyndall Moraine I Talus Tyndall Moraine I Debris flow & outwash slope Grain size distribution of surface rubble layer in cm (average) (70) Debris over fine-grained materials (30) (50) Debris over fine-grained materials (30) (150) (100) (50) (150) (30) Stability of land surface Stable Unstable A B C Distance from margin of the glacier Lichen coverage on exposed block (%) A C A C b) A A A A B Short Vegetation cover (%) Senecio keniophytum Long Vegetation Arabis alpina Tussock grass (Agrostis trachyphylla, etc) Carex monostachya Lobelia telekii Senecio keniodendron a) Till ages of the plots are the estimated ages based on glacial retreat rates (2.9 m/yr [ ], 3.8 m/yr [ 1958], Charnley 1959). b) The maximum movement of land surface was 610 cm during 2 years from 1994 to 1996 and 3200 cm during 8 years from 1994 to Vegetation cover is thin on the Lewis Moraine, because of substrate instability and steep slope. In places with large daily air and soil temperature fluctuations, such as tropical high mountains, daily freeze thaw cycles cause substrate instability, which heavily influences the distribution of vegetation. Discussion Deglaciation in the high mountains of East Africa The Tyndall Glacier of Mt Kenya retreated at a rate of ca 3 m/yr from 1958 to 1997, but at a more rapid rate of ca 10 m/yr from 1997 to Recently, accelerated glacial retreat has been prevalent among East African mountains. Figure 5 shows glaciers on Mt Kilimanjaro in the 1970s (Hastenrath 1984, 1997) and in 2002 (Mizuno 2003b). Glacier distribution in the 1970s is based on aerial photographs taken on 18 March 1972 (Geosurvey Ltd., Peter Gollmer, Nairobi), a photograph taken during a hot-air balloon flight over the Kibo crater on 10 March 1974 (Alan Root, Nairobi), and field observations by Hastenrath in 1971, 1973, and FIGURE 5 Glacial cover of Mt Kilimanjaro in the 1970s (stippled; Hastenrath 1984) and in 2002 (black).

8 Kazuharu Mizuno Glacier distribution in 2002 is based on photographs taken from a light aircraft on 17 August 2002 (Mizuno 2003b). The area covered by glaciers in 2002 was about half of what it was in the 1970s. This is a dramatic change after only 30 years. The retreat of glaciers on Mount Kenya is well documented for the periods and (Hastenrath and Kruss 1992; Mahaney 1990). Ice recession between 1899 and 1963 was closely correlated with solar radiation geometry on any given glacier. In contrast, ice thinning between 1963 and 1987 amounted to about 15 m for all glaciers, regardless of location. This suggests that climatic factors other than solar radiation played a more important role. The long-term precipitation records for the Kenyan highlands do not support precipitation deficits of such massive magnitude (Hastenrath and Kruss 1992). Vegetation succession in response to deglaciation All plant species near the glacier advanced as the glacier retreated. The first colonists of new till were Senecio keniophytum, Arabis alpina, moss, lichen, and Agrostis trachyphylla. Their rate of advance of m/yr from 1958 to 1997 was similar to the rate of glacial retreat (2.9 m/yr). When glacial retreat accelerated to 9.8 m/yr, from 1997 to 2002, pioneer species advanced at a faster rate: 12.2 m/yr for Arabis alpina, 10.2 m/yr for moss and lichen, 8.8 m/yr for Senecio keniophytum, and 6.4 m/yr for Agrostis trachyphylla. Senecio keniodendron and Lobelia telekii showed no obvious advances before 1997, but advanced rapidly at rates of 16.0 m/yr and 17.2 m/yr after Rapid glacier retreat generally leads to a succession of vegetation, and causes subtle but serious ecological changes. Pioneer species improve soil conditions and make the habitat suitable for other plants. One hundred years after glacial retreat, large woody plants such as Senecio keniodendron and Lobelia telekii can grow in formerly glacier-covered areas. Spence (1989) points out that pioneer succession in front of the Tyndall and Lewis glaciers proceeded with the appearance first of Senecio keniophytum, followed by Arabis alpine. The Senecio has fruits with morphological features, aiding in wind dispersion, while the Arabis and the grasses lack such features. Species such as Senecio keniophytum and Arabis alpina that can live at nival elevations on the mountain (>4500 m), appear to establish themselves most successfully (Spence 1989). Frost soil activity is intense on the till, and cold adiabatic winds sweep off the ice surface (Coe 1967). In particular, when the particle size of surface material is small, high water content in the soil causes periglacial processes such as frost creep and solifluction (Benedict 1970; Washburn 1973; Iwata 1983). These processes, in turn, destabilize the land surface and restrict plant growth (Mizuno 1998, 2002; Mizuno and Nakamura 1999). Conclusions Atmospheric warming is causing global diminution of glacier cover. Mt Kenya had 18 glaciers in the early 20th century, some of which have gradually disappeared; at present, only 11 glaciers remain (Hastenrath 1984). When glaciers covering mountain summits melt, plant cover can expand up the mountains. If warming continues, alpine plant cover may extend all the way to mountain summits, and then eventually diminish as trees colonize the areas formerly occupied by the alpine plants. The Tyndall Glacier has retreated by approximately 300 m in horizontal distance since In extensive mountain ranges such as the Alps or the Andes, if alpine plants were to be eradicated from a given mountain, they could be replaced by the dispersal of seeds from another mountain. On isolated mountains such as Mt Kenya or Mt Kilimanjaro, if alpine plants disappeared because of warming, it would be difficult for them to regenerate if the climate then cooled. Ecosystems on high mountains are very sensitive, and apparently even small environmental changes can cause obvious changes in vegetation. Understanding the relationship between alpine vegetation and its environment is critical to tracking global environmental change. ACKNOWLEDGMENTS The author wishes to thank Mr Shinichiro Ishikawa (1996), Mr Tatsuhiko Ouchi (1997), and Mr Yuichiro Fujioka and Mr Masaaki Ito (2002) for field assistance. I am also grateful to Mr Alexis Peltier, our aircraft pilot, and Mrs Chiaki Hayakawa, our adviser, for taking photographs of glaciers on Mt Kilimanjaro. The expenses for field research were supported by a Grantin-Aid for Scientific Research (Project No , headed by Kazuharu Mizuno, Kyoto University) from the Ministry of Education, Science, Sports and Culture, Japanese Government. AUTHOR Kazuharu Mizuno Graduate School of Asian and African Area Studies, Kyoto University, 46 Shimoadachicho, Yoshida, Sakyo-ku, Kyoto , Japan. mizuno@jambo.africa.kyoto-u.ac.jp Mountain Research and Development Vol 25 No 1 Feb 2005

9 Research 75 REFERENCES Baker BH Geology of the Mount Kenya Area. Report No. 79. Nairobi, Kenya: Geological Survey of Kenya. Baker BH, Mohr PA, William LAJ Geology of the Eastern Rift System of Africa. Special Paper No Boulder, CO: Geological Society of America. Benedict JB Downslope soil movement in a Colorado alpine region: Rates, processes and climatic significance. Arctic and Alpine Research 2: Bhatt N The geology of Mount Kenya. In: Allen I, editor. Guide to Mount Kenya and Kilimanjaro. Nairobi, Kenya: The Mountain Club of Kenya, pp Charnley FE Some observations on the glaciers of Mount Kenya. Journal of Glaciology 3: Coe MJ Colonization in the nival zone of Mt. Kenya. In: Proceedings of the First Symposium of the East African Academy in Kampala, Uganda. London: Longmans Green, pp Coe MJ The Ecology of the Alpine Zone of Mt. Kenya. The Hague, The Netherlands: Junk. Dansgaard W, Johnson SJ, Reeh N, Gundestrup N, Clausen HB, Hammer CU Climatic changes, Norseman and modern man. Nature 255: Dutton EAT Kenya Mountain. London: Jonathan Cape. Everden JF, Curtis GH The potassium-argon dating of late Cenozoic rocks in East Africa and Italy. Current Anthropology 64(4): Gregory JW The glacial geology of Mount Kenya. Quarterly Journal of the Geological Society of London 50: Gregory JW The Great Rift Valley. London: Murray. Gregory JW The geology of Mount Kenya. Quarterly Journal of the Geological Society of London 56: Gregory JW The Rift Valleys and Geology of East Africa. London: Seeley Services. Hastenrath S. 1983a. Diurnal thermal forcing and hydrological response of Lewis Glacier, Mount Kenya. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A 32: Hastenrath S. 1983b. Net balance, surface lowering, and ice-flow pattern in the interior of Lewis Glacier, Mount Kenya, Kenya. Journal of Glaciology 29: Hastenrath S The Glaciers of Equatorial East Africa. Dordrecht, The Netherlands: Reidel. Hastenrath S The climate of Mount Kenya and Kilimanjaro. In: Allen I, editor. Guide to Mount Kenya and Kilimanjaro. Nairobi, Kenya: The Mountain Club of Kenya, pp Hastenrath S Glacier recession on Kilimanjaro, East Africa, Journal of Glaciology 43: Hastenrath S, Kruss PD The dramatic retreat of Mount Kenya s glacier between 1963 and 1987: Greenhouse forcing. Annals of Glaciology 16: Hastenrath S, Rostom R, Caukwell R The Glaciers of Mount Kenya, Scale 1:5,000. SK 120. Nairobi, Kenya: Survey of Kenya. Hedberg O Vegetation belts of East African Mountains. Svensk Botanisk Tidskrift 45: Howard JW Mount Kenya, Alpine Journal 60: Iwata S Physiographic conditions for the rubber slope formation on Mt. Shiroumadake, the Japan Alps. Geographical Reports of Tokyo Metropolitan University 18:1 51. Kruss PD, Hastenrath S Variation of ice velocity at Lewis Glacier, Mount Kenya: Verification midway into a forecast. Journal of Glaciology 29: Light RU Focus on Africa. Special Publication No. 25. New York: American Geographical Society. Mackinder JH A journal to the summit of Mount Kenya, British East Africa. Geographical Journal 15: Mackinder JH The ascent of Mount Kenya. Alpine Journal 20: Mahaney WC Quaternary stratigraphy of Mount Kenya. A reconnaissance. Palaeoecology of Africa 11: Mahaney WC Chronology of glacial and periglacial deposits, Mount Kenya, East Africa: Description of type sections. Palaeoecology of Africa 14: Mahaney WC Late glacial and post glacial chronology of Mount Kenya, East Africa. Palaeoecology of Africa 16: Mahaney WC Quaternary glacial geology of Mount Kenya. In: Mahaney WC, editor. Quaternary and Environmental Research on East African Mountains. Rotterdam, The Netherlands: Balkema, pp Mahaney WC Ice on the Equator: Quaternary Geology of Mount Kenya. Sister Bay, WI: Caxton. Mahaney WC, Spence JR Lichenometry of Neoglacial moraines in Lewis and Tyndall cirques on Mount Kenya. Zeitschrift für Gletscherkunde und Glazialgeologie 25: McGregor Ross W The snowfield and glaciers of Kenya. Pall Mall Magazine 47: and 48: Mizuno K Succession processes of alpine vegetation in response to glacial fluctuations of Tyndall Glacier, Mt. Kenya, Kenya. Arctic and Alpine Research 30: Mizuno K Upper limit of plant distribution in response to lithology and rubble size of land surface in tropical high mountains of Bolivia. Geographical Reports of Tokyo Metropolitan University 37: Mizuno K. 2003a. Vegetation succession in response to glacial recession from 1997 to 2002 on Mt. Kenya [in Japanese with English abstract]. Journal of Geography 112: Mizuno K. 2003b. Degradation of glaciers on Kilimanjaro, East Africa [in Japanese with English abstract]. Journal of Geography 112: Mizuno K, Nakamura T Succession of alpine vegetation in relation to environmental changes around Tyndall Glacier on Mt. Kenya [in Japanese with English abstract]. Journal of Geography 108: Spence JR Plant succession on glacial deposits of Mount Kenya, East Africa. In: Mahaney WC, editor. Quaternary and Environmental Research on East African Mountains. Rotterdam, The Netherlands: Balkema, pp Spence JR, Mahaney WC Growth and ecology of Rhizocarpon section Rhizocarpon on Mount Kenya, East Africa. Arctic and Alpine Research 20: Thompson LG, Thompson EM, Davis ME, Henderson KA, Brecher HH, Zagorodnov VS, Mashiotta TA, Lin PN, Mikhalenko VN, Hardy DR, Beer J Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science 298: Troll C, Wien K Der Lewis Gletscher am Mount Kenya. Geografiska Annaler 31: Washburn A Periglacial Processes and Environments. London: Edward Arnold.

NORTH CASCADE SLACIER CLIMATE PROJECT Director: Dr. Mauri S. Pelto Department of Environmental Science Nichols College, Dudley MA 01571

NORTH CASCADE SLACIER CLIMATE PROJECT Director: Dr. Mauri S. Pelto Department of Environmental Science Nichols College, Dudley MA 01571 NORTH CASCADE SLACIER CLIMATE PROJECT Director: Dr. Mauri S. Pelto Department of Environmental Science Nichols College, Dudley MA 01571 INTRODUCTION The North Cascade Glacier-Climate Project was founded

More information

The Ecology of the Alpine Zone of Mount Kenya by M. J. Coe VIII and 136 pages with 20 figs., frontispiece and 24 plates.

The Ecology of the Alpine Zone of Mount Kenya by M. J. Coe VIII and 136 pages with 20 figs., frontispiece and 24 plates. The Ecology of the Alpine Zone of Mount Kenya by M. J. Coe VIII and 136 pages with 20 figs., frontispiece and 24 plates. A brief account of the history of the mountain's exploration is followed by an outline

More information

Geomorphology. Glacial Flow and Reconstruction

Geomorphology. Glacial Flow and Reconstruction Geomorphology Glacial Flow and Reconstruction We will use simple mathematical models to understand ice dynamics, recreate a profile of the Laurentide ice sheet, and determine the climate change of the

More information

Alpine Glacial Features along the Chimney Pond Trail, Baxter State Park, Maine

Alpine Glacial Features along the Chimney Pond Trail, Baxter State Park, Maine Maine Geologic Facts and Localities September, 2009 Alpine Glacial Features along the Chimney Pond Trail, Baxter State Park, Maine 45 54 57.98 N, 68 54 41.48 W Text by Robert A. Johnston, Department of

More information

Mapping the Snout. Subjects. Skills. Materials

Mapping the Snout. Subjects. Skills. Materials Subjects Mapping the Snout science math physical education Skills measuring cooperative action inferring map reading data interpretation questioning Materials - rulers - Mapping the Snout outline map and

More information

Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau

Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau HYDROLOGICAL PROCESSES Hydrol. Process. 22, 2953 2958 (2008) Published online 8 October 2007 in Wiley InterScience (www.interscience.wiley.com).6865 Rapid decrease of mass balance observed in the Xiao

More information

Volcano Above the Clouds

Volcano Above the Clouds Volcano Above the Clouds PROGRAM OVERVIEW NOVA joins climbers scaling Mount Kilimanjaro as they travel through ecosystems ranging from a cloud forest to a glaciated mountaintop. The program: chronicles

More information

A new technique for identifying rock-avalanche-sourced sediment in moraines and some palaeoclimatic implications

A new technique for identifying rock-avalanche-sourced sediment in moraines and some palaeoclimatic implications GSA DATA REPOSITORY 2012090 SUPPLEMENTARY INFORMATION A new technique for identifying rockavalanchesourced sediment in moraines and some palaeoclimatic implications Natalya V. Reznichenko 1*, Timothy R.H.

More information

ENVIRONMENTAL CHANGES IN RELATION TO TREE DEATH ALONG THE KUISEB RIVER IN THE NAMIB DESERT

ENVIRONMENTAL CHANGES IN RELATION TO TREE DEATH ALONG THE KUISEB RIVER IN THE NAMIB DESERT African Study Monographs, Suppl.30: 27-41, March 2005 27 ENVIRONMENTAL CHANGES IN RELATION TO TREE DEATH ALONG THE KUISEB RIVER IN THE NAMIB DESERT Kazuharu MIZUNO Graduate School of Asian and African

More information

1.4 Understand how moving ice acts as an agent of erosion and deposition. (Chap. 2)

1.4 Understand how moving ice acts as an agent of erosion and deposition. (Chap. 2) 1.4 Understand how moving ice acts as an agent of erosion and deposition. (Chap. 2) There are two types of glaciation. Alpine Glaciation Continental Glaciation Distinguish between the terms alpine glaciation

More information

GLACIER STUDIES OF THE McCALL GLACIER, ALASKA

GLACIER STUDIES OF THE McCALL GLACIER, ALASKA GLACIER STUDIES OF THE McCALL GLACIER, ALASKA T John E. Sater* HE McCall Glacier is a long thin body of ice shaped roughly like a crescent. Its overall length is approximately 8 km. and its average width

More information

MEASUREMENT OF THE RETREAT OF QORI KALIS GLACIER IN THE TROPICAL ANDES OF PERU BY TERRESTRIAL PHOTOGRAMMETRY ABSTRACT

MEASUREMENT OF THE RETREAT OF QORI KALIS GLACIER IN THE TROPICAL ANDES OF PERU BY TERRESTRIAL PHOTOGRAMMETRY ABSTRACT MEASUREMENT OF THE RETREAT OF QORI KALIS GLACIER IN THE TROPICAL ANDES OF PERU BY TERRESTRIAL PHOTOGRAMMETRY Henry H. Brecher and Lonnie G. Thompson Byrd Polar Research Center, The Ohio State Univessity

More information

The Montane ecosystems: Characteristics and conservation Esther I. Njiro University of Nairobi, Institute of African Studies 1997

The Montane ecosystems: Characteristics and conservation Esther I. Njiro University of Nairobi, Institute of African Studies 1997 The Montane ecosystems: Characteristics and conservation Esther I. Njiro University of Nairobi, Institute of African Studies 1997 enjiro@agi.uct.ac.za Keywords: mountains, conservation, vegetation zones,

More information

GSA DATA REPOSITORY

GSA DATA REPOSITORY GSA DATA REPOSITORY 2014131 Late Holocene fluctuations of Qori Kalis outlet glacier, Quelccaya Ice Cap, Peruvian Andes Justin S. Stroup, Meredith A. Kelly, Thomas V. Lowell, Patrick J. Applegate and Jennifer

More information

Glaciers. Clicker Question. Glaciers and Glaciation. How familiar are you with glaciers? West Greenland. Types of Glaciers.

Glaciers. Clicker Question. Glaciers and Glaciation. How familiar are you with glaciers? West Greenland. Types of Glaciers. Chapter 21 Glaciers A glacier is a large, permanent (nonseasonal) mass of ice that is formed on land and moves under the force of gravity. Glaciers may form anywhere that snow accumulation exceeds seasonal

More information

PHYSICAL GEOGRAPHY GEOGRAPHY EARTH SYSTEMS COASTAL SYSTEMS FLUVIAL SYSTEMS

PHYSICAL GEOGRAPHY GEOGRAPHY EARTH SYSTEMS COASTAL SYSTEMS FLUVIAL SYSTEMS PHYSICAL GEOGRAPHY EARTH SYSTEMS FLUVIAL SYSTEMS COASTAL SYSTEMS PHYSICAL GEOGRAPHY CORRIES / CIRQUES A Corrie or Cirque is the armchair shaped hollow that was the birthplace of a glacier. It has steep,

More information

Teacher s Guide For. Glaciers

Teacher s Guide For. Glaciers Teacher s Guide For Glaciers For grade 7 - College Program produced by Centre Communications, Inc. for Ambrose Video Publishing, Inc. Executive Producer William V. Ambrose Teacher's Guide by Mark Reeder

More information

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S ICE AGE TREKKING

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S ICE AGE TREKKING MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S ICE AGE TREKKING CONTENTS I. Enduring Knowledge... 3 II. Teacher Background... 3 III. Before Viewing this Video... 5 IV. Viewing Guide... 5 V. Discussion

More information

2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier?

2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier? 1 GLACIERS 1. (2pts) Define a glacier: 2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier? 3. (2pts) What is the relative size of Antarctica, Greenland,

More information

THE DISEQUILBRIUM OF NORTH CASCADE, WASHINGTON GLACIERS

THE DISEQUILBRIUM OF NORTH CASCADE, WASHINGTON GLACIERS THE DISEQUILBRIUM OF NORTH CASCADE, WASHINGTON GLACIERS CIRMOUNT 2006, Mount Hood, OR Mauri S. Pelto, North Cascade Glacier Climate Project, Nichols College Dudley, MA 01571 peltoms@nichols.edu NORTH CASCADE

More information

Glaciers. Reading Practice

Glaciers. Reading Practice Reading Practice A Glaciers Besides the earth s oceans, glacier ice is the largest source of water on earth. A glacier is a massive stream or sheet of ice that moves underneath itself under the influence

More information

Lidar Imagery Reveals Maine's Land Surface in Unprecedented Detail

Lidar Imagery Reveals Maine's Land Surface in Unprecedented Detail Maine Geologic Facts and Localities December, 2011 Lidar Imagery Reveals Maine's Land Surface in Unprecedented Detail Text by Woodrow Thompson, Department of Agriculture, Conservation & Forestry 1 Introduction

More information

A trip to Steindalen. - geology and landscape on the way to the glacier. Geoffrey D. Corner

A trip to Steindalen. - geology and landscape on the way to the glacier. Geoffrey D. Corner A TRIP TO STEINDALEN Excursion guide Please take this with you on your trip, but don t leave it behind as litter. A trip to Steindalen - geology and landscape on the way to the glacier A part of Geologiskolen,

More information

EFFECT OF THE COASTAL CONSERVATION DUE TO BEACH NOURISHMENT OF TOTORI SAND DUNE COAST

EFFECT OF THE COASTAL CONSERVATION DUE TO BEACH NOURISHMENT OF TOTORI SAND DUNE COAST Proceedings of the 7 th International Conference on Asian and Pacific Coasts (APAC 203) Bali, Indonesia, September 2-26, 203 EFFECT OF THE COASTAL CONSERVATION DUE TO BEACH NOURISHMENT OF TOTORI SAND DUNE

More information

Glaciers. Glacier Dynamics. Glaciers and Glaciation. East Greenland. Types of Glaciers. Chapter 16

Glaciers. Glacier Dynamics. Glaciers and Glaciation. East Greenland. Types of Glaciers. Chapter 16 Chapter 16 Glaciers A glacier is a large, permanent (nonseasonal) mass of ice that is formed on land and moves under the force of gravity. Glaciers may form anywhere that snow accumulation exceeds seasonal

More information

READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean

READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall 2018 63 pts NAME DUE: Tuesday, October 23 Glaciers: A Part of Two Basic Cycles (p. 192-195) 1. Match each type of glacier to its description: (2 pts)

More information

GLOFs from moraine-dammed lakes: their causes and mechanisms V. Vilímek, A. Emmer

GLOFs from moraine-dammed lakes: their causes and mechanisms V. Vilímek, A. Emmer GLOFs from moraine-dammed lakes: their causes and mechanisms V. Vilímek, A. Emmer Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic vilimek@natur.cuni.cz

More information

1 Glacial Erosion and

1 Glacial Erosion and www.ck12.org Chapter 1. Glacial Erosion and Deposition CHAPTER 1 Glacial Erosion and Deposition Lesson Objectives Discuss the different erosional features formed by alpine glaciers. Describe the processes

More information

READING QUESTIONS: Glaciers GEOL /WI 60 pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean

READING QUESTIONS: Glaciers GEOL /WI 60 pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean READING QUESTIONS: Glaciers GEOL 131 18/WI 60 pts NAME DUE: Tuesday, March 13 Glaciers: A Part of Two Basic Cycles (p. 192-195) 1. Match each type of glacier to its description: (2 pts) a. Alpine Ice from

More information

Q: What is a period of time whereby the average global temperature has decreased? Q: What is a glacier?

Q: What is a period of time whereby the average global temperature has decreased? Q: What is a glacier? Q: What is a glacier? A: A large sheet of ice which lasts all year round. Q: What is a period of time whereby the average global temperature has decreased? A: A glacial. Q: What is an interglacial? Q:

More information

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S SEARCHING GLACIAL FEATURES

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S SEARCHING GLACIAL FEATURES MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S SEARCHING GLACIAL FEATURES CONTENTS I. Enduring Knowledge... 3 II. Teacher Background... 3 III. Before Viewing the Video... 5 IV. Viewing Guide...

More information

Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA Fact Sheet 2009 3046 >> Pubs Warehouse > FS 2009 3046 USGS Home Contact USGS Search USGS Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA Fifty years

More information

The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science.

The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science. The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science. Don J. Easterbrook, Dept. of Geology, Western Washington University, Bellingham, WA The recent Portland

More information

Glaciological and Historical Analyses at the Boundary Glacier, Canadian Rocky Mountains

Glaciological and Historical Analyses at the Boundary Glacier, Canadian Rocky Mountains Western Geography, 10/11(2000/01), pp. 30 42 Western Division, Canadian Association of Geographers Glaciological and Historical Analyses at the Boundary Glacier, Canadian Rocky Mountains N.K. Jones Professor

More information

Geologic Trips, Sierra Nevada

Geologic Trips, Sierra Nevada ISBN 0-9661316-5-7 GeoPress Excerpt from Geologic Trips, Sierra Nevada by Ted Konigsmark All rights reserved. No part of this book may be reproduced without written permission, except for critical articles

More information

Long term Forecast of Glaciation and Evaluation of Glacial Resources of the Central Asia with the Use of Isotopic Methods

Long term Forecast of Glaciation and Evaluation of Glacial Resources of the Central Asia with the Use of Isotopic Methods Long term Forecast of Glaciation and Evaluation of Glacial Resources of the Central Asia with the Use of Isotopic Methods Vladimir I. SHATRAVIN, Tamara V. TUZOVA, Institute of Water Problems and Hydropower

More information

Revised Draft: May 8, 2000

Revised Draft: May 8, 2000 Revised Draft: May 8, 2000 Accepted for publication by the International Association of Hydrological Sciences. Paper will be presented at the Debris-Covered Glaciers Workshop in September 2000 at the University

More information

Glaciers Earth 9th Edition Chapter 18 Mass wasting: summary in haiku form Glaciers Glaciers Glaciers Glaciers Formation of glacial ice

Glaciers Earth 9th Edition Chapter 18 Mass wasting: summary in haiku form Glaciers Glaciers Glaciers Glaciers Formation of glacial ice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Earth 9 th Edition Chapter 18 Mass wasting: summary in haiku form Ten thousand years thence big glaciers began to melt - called "global warming." are parts of two basic

More information

Project Completion Rocky Mountains Cooperative Ecosystem Studies Unit

Project Completion Rocky Mountains Cooperative Ecosystem Studies Unit Project Completion Rocky Mountains Cooperative Ecosystem Studies Unit Project Title: Glacier Change at Rocky Mountain National Park Discipline: Natural Resources Physical Science Type of Project: Technical

More information

Regional impacts and vulnerability mountain areas

Regional impacts and vulnerability mountain areas Regional impacts and vulnerability mountain areas 1 st EIONET workshop on climate change vulnerability, impacts and adaptation EEA, Copenhagen, 27-28 Nov 2007 Klaus Radunsky 28 Nov 2007 slide 1 Overview

More information

GLACIATION. The Last Ice Age (see Chapter 12) and. Pleistocene Ice Cap. Glacial Dynamics 10/2/2012. Laurentide Ice Sheet over NYS

GLACIATION. The Last Ice Age (see Chapter 12) and. Pleistocene Ice Cap. Glacial Dynamics 10/2/2012. Laurentide Ice Sheet over NYS GLACIATION and New York State Prof. Anthony Grande The Last Ice Age (see Chapter 1) The Pleistocene Epoch began 1.6 mya. During this time, climates grew colder. There were numerous ice ages starting 100,000000

More information

Climate Change and State of Himalayan Glaciers: Issues, Challenges and Facts

Climate Change and State of Himalayan Glaciers: Issues, Challenges and Facts Climate Change and State of Himalayan Glaciers: Issues, Challenges and Facts D.P. Dobhal dpdobhal@wihg.res.in Wadia Institute of Himalayan Geology Dehra Dun Major Issues Are the Himalayan glaciers receding

More information

Lesson 5: Ice in Action

Lesson 5: Ice in Action Everest Education Expedition Curriculum Lesson 5: Ice in Action Created by Montana State University Extended University and Montana NSF EPSCoR http://www.montana.edu/everest Lesson Overview: Explore glaciers

More information

Dating the Cheops Glacier with Lichenometry, Dendrochronology and Air Photo Analyses

Dating the Cheops Glacier with Lichenometry, Dendrochronology and Air Photo Analyses Dating the Cheops Glacier with Lichenometry, Dendrochronology and Air Photo Analyses By: Janek Wosnewski, Sean Hillis, Dan Gregory and Kodie Dewar December 09, 2009 Geography 477 Field School Instructor:

More information

GEOGRAPHY OF GLACIERS 2

GEOGRAPHY OF GLACIERS 2 GEOGRAPHY OF GLACIERS 2 Roger Braithwaite School of Environment and Development 1.069 Arthur Lewis Building University of Manchester, UK Tel: UK+161 275 3653 r.braithwaite@man.ac.uk 09/08/2012 Geography

More information

Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College

Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College Glaciers Glaciers are parts of two basic cycles: 1. Hydrologic cycle 2. Rock cycle A glacier is a thick mass of ice

More information

Glacier change in the American West. The Mazama legacy of f glacier measurements

Glacier change in the American West. The Mazama legacy of f glacier measurements Glacier change in the American West 1946 The Mazama legacy of f glacier measurements The relevance of Glaciers Hazards: Debris Flows Outburst Floods Vatnajokull, 1996 White River Glacier, Mt. Hood The

More information

ESS Glaciers and Global Change

ESS Glaciers and Global Change ESS 203 - Glaciers and Global Change Friday January 5, 2018 Outline for today Please turn in writing assignment and questionnaires. (Folders going around) Questions about class outline and objectives?

More information

TEACHER PAGE Trial Version

TEACHER PAGE Trial Version TEACHER PAGE Trial Version * After completion of the lesson, please take a moment to fill out the feedback form on our web site (https://www.cresis.ku.edu/education/k-12/online-data-portal)* Lesson Title:

More information

Glaciers. Glacier Dynamics. Glacier Dynamics. Glaciers and Glaciation. Types of Glaciers. Chapter 15

Glaciers. Glacier Dynamics. Glacier Dynamics. Glaciers and Glaciation. Types of Glaciers. Chapter 15 Chapter 15 Glaciers and Glaciation Glaciers A glacier is a large, permanent (nonseasonal) mass of ice that is formed on land and moves under the force of gravity. Glaciers may form anywhere that snow accumulation

More information

I. Types of Glaciers 11/22/2011. I. Types of Glaciers. Glaciers and Glaciation. Chapter 11 Temp. B. Types of glaciers

I. Types of Glaciers 11/22/2011. I. Types of Glaciers. Glaciers and Glaciation. Chapter 11 Temp. B. Types of glaciers Why should I care about glaciers? Look closely at this graph to understand why we should care? and Glaciation Chapter 11 Temp I. Types of A. Glacier a thick mass of ice that originates on land from the

More information

Glaciers. Chapter 17

Glaciers. Chapter 17 Glaciers Chapter 17 Vocabulary 1. Glacier 2. Snowfield 3. Firn 4. Alpine glacier 5. Continental glacier 6. Basal slip 7. Internal plastic flow 8. Crevasses 9. Glacial grooves 10. Ice shelves 11. Icebergs

More information

Chapter 20. The Physical Geography of Africa South of the Sahara

Chapter 20. The Physical Geography of Africa South of the Sahara Chapter 20 The Physical Geography of Africa South of the Sahara Chapter Objectives Identify the major landforms, water systems, and natural resources of Africa south of the Sahara. Describe the relationship

More information

Biotic Acceleration of Glacier Melting in Yala Glacier 9 Langtang Region, Nepal Himalaya

Biotic Acceleration of Glacier Melting in Yala Glacier 9 Langtang Region, Nepal Himalaya Snow and Glacier Hydrology (Proceedings of the Kathmandu Symposium, November 992). IAHS Publ. no. 28,993. 309 Biotic Acceleration of Glacier Melting in Yala Glacier 9 Langtang Region, Nepal Himalaya SHIRO

More information

Shrubs and alpine meadows represent the only vegetation cover.

Shrubs and alpine meadows represent the only vegetation cover. Saldur river General description The study area is the upper Saldur basin (Eastern Italian Alps), whose elevations range from 2150 m a.s.l. (location of the main monitoring site, LSG) and 3738 m a.s.l.

More information

Alaskan landscape evolution and glacier change in response to changing climate

Alaskan landscape evolution and glacier change in response to changing climate Alaskan landscape evolution and glacier change in response to changing climate Following the publication of two pictures comparing the length of the Muir Glacier in Alaska, USA in the June 2005 issue of

More information

Chapter 16 Glaciers and Glaciations

Chapter 16 Glaciers and Glaciations Chapter 16 Glaciers and Glaciations Name: Page 419-454 (2nd Ed.) ; Page 406-439 (1st Ed.) Part A: Anticipation Guide: Please read through these statements before reading and mark them as true or false.

More information

Mendenhall Glacier Facts And other Local Glaciers (updated 3/13/14)

Mendenhall Glacier Facts And other Local Glaciers (updated 3/13/14) University of Alaska Southeast School of Arts & Sciences A distinctive learning community Juneau Ketchikan Sitka Mendenhall Glacier Facts And other Local Glaciers (updated 3/13/14) This document can be

More information

Coverage of Mangrove Ecosystem along Three Coastal Zones of Puerto Rico using IKONOS Sensor

Coverage of Mangrove Ecosystem along Three Coastal Zones of Puerto Rico using IKONOS Sensor Coverage of Mangrove Ecosystem along Three Coastal Zones of Puerto Rico using IKONOS Sensor Jennifer Toledo Rivera Geology Department, University of Puerto Rico, Mayagüez Campus P.O. Box 9017 Mayagüez,

More information

A TOPOGRAPHIC FEATURE OF THE HANGING VALLEYS OF THE YOSEMITE.

A TOPOGRAPHIC FEATURE OF THE HANGING VALLEYS OF THE YOSEMITE. A TOPOGRAPHIC FEATURE OF THE HANGING VALLEYS OF THE YOSEMITE. THE larger hanging valleys around the Yosemite valley have topographic features in common that are interesting in themselves, and they likewise

More information

glacier Little Ice Age continental glacier valley glacier ice cap glaciation firn glacial ice plastic flow basal slip Chapter 14

glacier Little Ice Age continental glacier valley glacier ice cap glaciation firn glacial ice plastic flow basal slip Chapter 14 Little Ice Age glacier valley glacier continental glacier ice cap glaciation firn glacial ice plastic flow basal slip glacial budget zone of accumulation zone of wastage glacial surge abrasion glacial

More information

Kicking the Alpine Plants Out Mountain Goat Wallows In Mount Peale Research Natural Area (La Sal Mountains, Utah)

Kicking the Alpine Plants Out Mountain Goat Wallows In Mount Peale Research Natural Area (La Sal Mountains, Utah) Kicking the Alpine Plants Out Mountain Goat Wallows In Mount Peale Research Natural Area (La Sal Mountains, Utah) Marc Coles-Ritchie, Grand Canyon Trust November 21, 2017 Mountain goats are digging up

More information

Dynamic Planet C Test

Dynamic Planet C Test Northern Regional: January 19 th, 2019 Dynamic Planet C Test Name(s): Team Name: School Name: Team Number: Rank: Score: Dynamic Planet B/C Glaciers (87 total points) Multiple choice/fill in the blank (23

More information

Glacial lakes as sentinels of climate change in Central Himalaya, Nepal

Glacial lakes as sentinels of climate change in Central Himalaya, Nepal Glacial lakes as sentinels of climate change in Central Himalaya, Nepal Sudeep Thakuri 1,2,3, Franco Salerno 1,3, Claudio Smiraglia 2,3, Carlo D Agata 2,3, Gaetano Viviano 1,3, Emanuela C. Manfredi 1,3,

More information

Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: n zne:

Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: n zne: Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: The area of a glacier where mass is lost through melting or

More information

Chapter 14. Glaciers and Glaciation

Chapter 14. Glaciers and Glaciation Chapter 14 Glaciers and Glaciation Introduction Pleistocene Glaciations: A series of "ice ages" and warmer intervals that occurred 2.6 million to 10,000 years ago. The Little Ice Age was a time of colder

More information

GRANDE News Letter Volume1, No.3, December 2012

GRANDE News Letter Volume1, No.3, December 2012 GRANDE News Letter Volume1, No.3, December 2012 Building a water management system in La Paz, Bolivia Climate change is a phenomenon that affects the entire world, but its impact on people differs depending

More information

Glacial Geomorphology Exercise

Glacial Geomorphology Exercise James Madison University Field Course in western Ireland Glacial Geomorphology Exercise 3-day road log (abbreviated) Striations Large kame terrace Cirque with moraines Kame delta Striations Eskers Raised

More information

Mighty Glaciers. Mighty Glaciers. Visit for thousands of books and materials.

Mighty Glaciers. Mighty Glaciers.  Visit  for thousands of books and materials. Mighty Glaciers A Reading A Z Level M Leveled Reader Word Count: 684 LEVELED READER M Mighty Glaciers Written by Ned Jensen Visit www.readinga-z.com for thousands of books and materials. www.readinga-z.com

More information

Typical avalanche problems

Typical avalanche problems Typical avalanche problems The European Avalanche Warning Services (EAWS) describes five typical avalanche problems or situations as they occur in avalanche terrain. The Utah Avalanche Center (UAC) has

More information

GY 301: Geomorphology Lab 9: Alpine Glaciers and Geomorphology

GY 301: Geomorphology Lab 9: Alpine Glaciers and Geomorphology Name: Raw score: /45 Percentage: /100% Your Task: Today s lab deals with the interpretation of geomorphological features that typically result from alpine glacial activity. The exercises should be able

More information

Glacial Origins and Features of Long Island

Glacial Origins and Features of Long Island Glacial Origins and Features of Long Island Interior Coastal Plain Continental Shelf Long Island s Geology 0 Ma Phanerozoic 540 Ma Proterozoic 2500 Ma Archean 3800 Ma Hadean 4600 Ma C M P Geologic Time

More information

Regional Glacier Mass Balance Variation in the North Cascades

Regional Glacier Mass Balance Variation in the North Cascades 1 STUDY PLAN NATURAL RESOURCE PROTECTION PROGRAM Regional Glacier Mass Balance Variation in the North Cascades PRINCIPLE INVESTIGATORS JON L. RIEDEL NORTH CASCADES NATIONAL PARK ANDREW FOUNTAIN AND BOB

More information

Glaciers and Glaciation

Glaciers and Glaciation Chapter 18 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Glaciers and Glaciation Tarbuck and Lutgens Glaciers: A Part of Two Basic Cycles A glacier is a thick mass of ice that forms,

More information

ENVI2030L - ALPINE AND CONTINENTAL GLACIATION

ENVI2030L - ALPINE AND CONTINENTAL GLACIATION NAME ENVI2030L - ALPINE AND CONTINENTAL GLACIATION I. Introduction Glaciers are slowly moving ice sheets. They are very effective erosional agents and can drastically modify the landscapes over which they

More information

THE INFLUENCE OF DEBRIS ON THE FLOW OF GLACIERS.

THE INFLUENCE OF DEBRIS ON THE FLOW OF GLACIERS. THE INFLUENCE OF DEBRIS ON THE FLOW OF GLACIERS. THE behavior of ice under various conditions is frequently illustrated by experiments with pitch or other similar viscous fluids or plastic solids. If sand

More information

47I THE LAS ANIMAS GLACIER.

47I THE LAS ANIMAS GLACIER. THE LAS ANIMAS GLACIER. ONE of the largest of the extinct glaciers of the Rocky Mountains was that which occupied the valley of the Las Animas river. This stream originates in the San Juan mountains in

More information

Warming planet, melting glaciers

Warming planet, melting glaciers Warming planet, melting glaciers Arun B Shrestha abshrestha@icimod.org International Centre for Integrated Mountain Development Kathmandu, Nepal Asia-Pacific Youth forum on Climate Actions and Mountain

More information

Barbara Borowiecki University of Wisconsin - Milwaukee

Barbara Borowiecki University of Wisconsin - Milwaukee POTENTIAL SIGNIFICANCE OF DRu}~IN FIELD MODIFICATION Barbara Borowiecki University of Wisconsin - Milwaukee Spatial characteristics of numerous drumlin fields, including the one in Wisconsin, have been

More information

2.0 Physical Characteristics

2.0 Physical Characteristics _ 2.0 Physical Characteristics 2.1 Existing Land Use for the Project The site is comprised of approximately 114 acres bounded by Highway 101 to the north, the existing town of Los Alamos to the east, State

More information

GEOGRAPHY AND HISTORY

GEOGRAPHY AND HISTORY GEOGRAPHY AND HISTORY YEAR 1, PART 1 www.vicensvives.es Contents 01 Our planet Earth 02 The representation of the Earth: maps 03 The Earth s relief 04 Rivers and seas 05 Weather and climate 06 Climates

More information

Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland

Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland Félix O. Rivera Santiago Department Of Geology, University Of Puerto Rico, Mayaguez

More information

GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN. By Syed Naseem Abbas Gilany

GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN. By Syed Naseem Abbas Gilany GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN By Syed Naseem Abbas Gilany PRESENTATION OUTLINE Introduction Problem Statement / Rationale Objectives Material

More information

Recent Changes in Glacier Tongues in the Langtang Khola Basin, Nepal, Determined by Terrestrial Photogrammetry

Recent Changes in Glacier Tongues in the Langtang Khola Basin, Nepal, Determined by Terrestrial Photogrammetry Snow and Glacier Hydrology (Proceedings of the Kathmandu Symposium, November 1992). IAHSPubl. no. 218,1993. 95 Recent Changes in Glacier Tongues in the Langtang Khola Basin, Nepal, Determined by Terrestrial

More information

Chapter 7 Snow and ice

Chapter 7 Snow and ice Chapter 7 Snow and ice Throughout the solar system there are different types of large ice bodies, not only water ice but also ice made up of ammonia, carbon dioxide and other substances that are gases

More information

Thirteenth International Water Technology Conference, IWTC , Hurghada, Egypt 1249

Thirteenth International Water Technology Conference, IWTC , Hurghada, Egypt 1249 Thirteenth International Water Technology Conference, IWTC 13 2009, Hurghada, Egypt 1249 EVALUATION OF LOCAL SCOUR AROUND BRIDGE PIERS (RIVER NILE BRIDGES AS CASE STUDY) Sherine Ismail Assoc. Prof., Survey

More information

UNIT 5 AFRICA PHYSICAL GEOGRAPHY SG 1 - PART II

UNIT 5 AFRICA PHYSICAL GEOGRAPHY SG 1 - PART II UNIT 5 AFRICA PHYSICAL GEOGRAPHY SG 1 - PART II III. CLIMATE & VEGETATION A. The four main climate zones are tropical wet, tropical wet/dry (split into monsoon & savanna), semiarid, and arid. Other climate

More information

RE Code Names Each regional ecosystem is given a three part code number e.g For example

RE Code Names Each regional ecosystem is given a three part code number e.g For example REGIONAL ECOSYSTEMS vegetation communities in a bioregion that are consistently associated with a particular combination of geology, landform & soil. The Queensland Herbarium regularly reviews and updates

More information

Glaciers. Valley or Alpine glaciers. Ice sheets. Piedmont - foot of the mountain glaciers. Form in mountainous areas Move downslope in valleys

Glaciers. Valley or Alpine glaciers. Ice sheets. Piedmont - foot of the mountain glaciers. Form in mountainous areas Move downslope in valleys Glaciers & Ice Ages Glaciers Valley or Alpine glaciers Form in mountainous areas Move downslope in valleys Ice sheets Move outward from center Continental glaciers - large scale, ice age type. Presently

More information

J. Oerlemans - SIMPLE GLACIER MODELS

J. Oerlemans - SIMPLE GLACIER MODELS J. Oerlemans - SIMPE GACIER MODES Figure 1. The slope of a glacier determines to a large extent its sensitivity to climate change. 1. A slab of ice on a sloping bed The really simple glacier has a uniform

More information

Please make sure that all teachers and chaperones attending the field study are aware of the following information:

Please make sure that all teachers and chaperones attending the field study are aware of the following information: Dear Teacher, Thank you for signing up for The Ice Age at the Lost Valley Visitor Center in Glacial Park. The visitor center is located in the middle of Glacial Park. Follow the signs from the Harts Road

More information

Mediterranean Europe

Mediterranean Europe Chapter 17, Section World Geography Chapter 17 Mediterranean Europe Copyright 2003 by Pearson Education, Inc., publishing as Prentice Hall, Upper Saddle River, NJ. All rights reserved. Chapter 17, Section

More information

2012. Proceedings of the 11 European Geoparks Conference. AGA Associação Geoparque Arouca, Arouca, 5-6.

2012. Proceedings of the 11 European Geoparks Conference. AGA Associação Geoparque Arouca, Arouca, 5-6. References to this volume It is suggested that either the following alternatives should be used for future bibliographic references to the whole or part this volume: th Sá, A.A., Rocha, D., Paz, A. & Correia,

More information

Expansion of glacier lakes in recent decades in the Bhutan Himalayas

Expansion of glacier lakes in recent decades in the Bhutan Himalayas Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. no. 264, 2000. 165 Expansion of glacier lakes in recent decades in the Bhutan Himalayas

More information

What Is An Ecoregion?

What Is An Ecoregion? Ecoregions of Texas What Is An Ecoregion? Ecoregion a major ecosystem with distinctive geography, characteristic plants and animals, and ecosystems that receives uniform solar radiation and moisture Sometimes

More information

Tidewater Glaciers: McCarthy 2018 Notes

Tidewater Glaciers: McCarthy 2018 Notes Tidewater Glaciers: McCarthy 2018 Notes Martin Truffer, University of Alaska Fairbanks June 1, 2018 What makes water terminating glaciers special? In a normal glacier surface mass balance is always close

More information

Long Island Subglacial Drainage Patterns Reveal the Direction of Glacial Flow

Long Island Subglacial Drainage Patterns Reveal the Direction of Glacial Flow Long Island Subglacial Drainage Patterns Reveal the Direction of Glacial Flow Waldemar Pacholik Introduction: The debate regarding the chronology of the development of Long Island s (LI s) topography is

More information

SYNOPSIS WEATHER AND SNOWPACK

SYNOPSIS WEATHER AND SNOWPACK Peak 6996 Avalanche Fatality Incident Report Glacier National Park, MT Date of Avalanche: 31 March 2010 Date of Investigation: 2 April 2010 Investigation Team: Erich Peitzsch (USGS), Ted Steiner (Chugach

More information

P. Kasser and H. Siegenthaler, Laboratory of Hydraulics, Hydrology and

P. Kasser and H. Siegenthaler, Laboratory of Hydraulics, Hydrology and THICKNESS CHANGES OF SWISS GLACIERS (Aerial photogrammetrie maps) Silvretta, Verstancla and Chamm glaciers, surveys 1959 and 1973; 1:10,000 (1976) Limmern and Plattalva glaciers, surveys 1947 and 1977;

More information

How stable or variable is the climate of Amazonia?

How stable or variable is the climate of Amazonia? How stable or variable is the climate of Amazonia? Frank Mayle Mitch Power Bronwen Whitney University of Edinburgh Mark Bush Florida Institute of Technology Paul Baker, Sheri Fritz etc etc etc Glacial-interglacial

More information