Recent Changes in Glacier Tongues in the Langtang Khola Basin, Nepal, Determined by Terrestrial Photogrammetry

Size: px
Start display at page:

Download "Recent Changes in Glacier Tongues in the Langtang Khola Basin, Nepal, Determined by Terrestrial Photogrammetry"

Transcription

1 Snow and Glacier Hydrology (Proceedings of the Kathmandu Symposium, November 1992). IAHSPubl. no. 218, Recent Changes in Glacier Tongues in the Langtang Khola Basin, Nepal, Determined by Terrestrial Photogrammetry G. KAPPENBERGER 1, U. STEINEGGER 2, L. N. BRAUN 2 & R. KOSTKA 3 1 Swiss Institute of Meteorology, Osservatorio Ticinese, CH-6605 Locarno Monti, Switzerland 2 Swiss Federal Institute of Technology ETH, Winterthurerstr. 190, CH-8057 Zurich, Switzerland 3 Institute for Applied Geodesy and Photogrammetry, Technical University, Steyrergasse 30, A-8010 Graz, Austria Abstract Changes in the position of glacier tongues reflect the mass balance conditions of past years. A general advance or retreat of glaciers indicates a corresponding change in weather or climate. Changes in glacierized area, in turn, will influence glacier runoff. An analysis of aerial or terrestrial photographs by means of digital image processing allows inferences to be made about glacier fluctuations, even in areas where no accurate geodetic surveys are available over longer time periods. An approximative determination of the displacement of five glacier tongues in the Langtang Khola basin was made for the period between 1980 and The results show that only small fluctuations occurred on south-facing glaciers. Meanwhile, glaciers on north-facing slopes advanced. There is some evidence that this advance took place for the most part after A possible explanation of the aspect-dependent behaviour of glacier terminus changes is given. INTRODUCTION Discharge from glaciated basins of the Himalayas plays an important role, for instance in the maintaining of a relatively high base flow during the dry winter season, most likely due to melting at the base of the glaciers (Motoyama et al., 1987; Braun et al., 1993). Changes in glacierization may alter runoff of a basin to a great extent (see Chen 1991, for alpine conditions). An optimal use of water resources calls for sufficient quantitative glacio-hydrological information. In this contribution a possible application of remote sensing, employing terrestrial photogrammetry, is given. The aim of this investigation was to determine changes of glacierization and their possible consequences for runoff production. Changes of the length and area of glaciers give valuable indications of climatic variations. Changes in accumulation and/or ablation conditions may

2 96 G. Kappenberger et al. cause changes in the position of the terminal position and glacierized area after a response time specific to the glacier considered. This response time may be as long as a quarter of a century for long valley glaciers (e.g. Grosser Aletsch Glacier, Switzerland). A thick debris cover as typical for Himalayan valley glaciers may prolong the response time considerably due to a strong reduction of ablation at the glacier surface. Small and clean kar-glaciers, on the other hand, have a typical response time of one to a few years. With the available images covering only 10 to 20 years' time interval good results could be expected for rather small glaciers without extensive debris-cover. The goal of glacier cartography is the presentation of different glacial phenomena in cartographic form, and the mapping of snow and ice bodies (Williams, 1986). In the study area of Langtang Himal (Fig. 1) the valley glaciers are mostly debris-covered. The old lateral and terminal moraines are well defined in most cases, but the existing images cannot give reliable information on the current position of ice borders. Slope glaciers free from debris cover, however, generally show well defined ice edges. The determination of glacier fluctuations during the past decades can be carried out favourably for this type of glaciers using remote sensing methods. A rather simple method for the detection of glacier fluctuations consists in the watershed boundary or mountain ridge trail gauging station o town, Kharka glacier terminus nvestigated Langtang Li rung 7234 Langtang Glacier 5 km P3Tithang Karpo N I Langtang Gangtsa j La 5122 Gangchenpo 6387 Fig. 1 Location map of Langtang region, where recent changes in glacier tongues were determined by terrestrial photogrammetry. Elevations based on the map of the Austrian Alpine Club (1990).

3 Recent changes in glacier tongues in the Langtang Khola basin 97 comparison of images by means of digital image processing. The result is a visualization of the changes between the times when the images were taken. Glacier fluctuations in the Langtang valley The first investigations on glacierization and the movement of glaciers in the Langtang region were done in the 1960s. Since then, some glaciers were monitored sporadically (Watanabe & Higuchi, 1987). Numerous contributions have been published on Yala Glacier (see for instance Ono, 1985). A continuous observation series for Yala Glacier between 1982 and 1989 is given by Yamada et al. (1992). A glacier inventory was established by Shiraiwa & Yamada (1991). Historic glacier positions were studied and dated by Shiraiwa & Watanabe (1991). Our observations are aimed at contributing some information on strongly differing glaciers over the last years. For this purpose high quality terrestrial images were taken as a reference at a scale as large as possible in the area in question (Table 1, Figs 2-4). Photos taken at a later date were transformed onto these reference images with the aid of clearly identifiable points in the immediate area in question. Resulting from this process are scanned images of the time-series digitally transformed onto the reference image. For a final statement concerning the glacier changes, the well-defined ice margins and the available identifiable details were employed. As a measure of the glacier changes the relative displacement of the ice margin is given. The approximate scale allows the estimation of the absolute value of the displacement. RESULTS For each of the 5 glaciers as shown in Fig. 1 and Table 1 the changes in position of the glacier fronts were evaluated using the method described above. The results are summarized graphically in Figs 2-4. Cones of ice avalanches and uncertain ice borders were not considered in this analysis. The south-facing glaciers (Fig. 2) can be regarded as stationary. For Yala Glacier our finding is in accordance with Yamada et al. (1992) who report a mean advance of 2.6 m between October 1982 and September 1987, and a mean retreat of 4.0 m between 1987 and 1989 based on eight reference points. The two glaciers on north-facing slopes (Fig. 3) show a clear advance of the ice borders. In the case of Gangtsa La Glacier the maximal advance is about 50 m, and for Gangchenpo West Glacier about 30 m. There is evidence that the main advance took place after 1984 here. The considerable retreat of the Pemthang Karpo West Glacier (Fig. 4) can be explained by large ice break-offs. This fact is indicated by the steepness of the slope and the large avalanche cone below the ice front. As a result, the variation of this ice edge is not caused by meteorological or climatological conditions.

4 98 G. Kappenberger et al. Table 1 Details on the glacier termini investigated (inventory numbering based on Shiraiwa & Yamada, 1991). Glacier Inventory: ID No. Kyimoshung (Khymjung) L090 Yala L110 Gangtsa La L520 Gangchenpo West L410 Pemthang Karpo West L310 Height of terminus (m asl) Glacier exposition Orient, of image Approx. scale at ice edge Reference level and ice edge Glacier front Activity 4360 South Northwest 1: , 1991 lobed stationary Southwest Northeast 1: lobed stationary North South 1: lobed advance Northwest Southeast 1: , 1991 lobed advance 5200 West East 1: calving uncertain Measurements carried out by means of remote sensing have not shown significant changes of the debris-covered glacier tongues over the last twenty years. The oldest image documents used go back to Erwin Schneider's terrestrial photogrammetric and aerial photographs taken in 1970 and in Profile measurements across Lining Glacier performed in March 1991 and 1992 indicate that this heavily debris-covered valley glacier has lost considerable mass in the tongue area (see Fig. 1). Despite of a stationary glacier terminus this glacier is not in a stationary state. Future investigations on further valley glaciers should be encouraged in order to discover whether these also show aspect-related and other differences. -~ < &%*"*,T %'sf: v r : *y l Ï'.. iyçtf.s^x' Fig. 2 Reference level and ice edges of Kyimoshung (left) and Yala (right) Glaciers, both generally oriented towards South and showing no significant changes in glacier terminus position between 1980 and See also Table 1 for physiographical details.

5 Recent changes in glacier tongues in the Langtang Khola basin 99 Fig. 3 Reference level and ice edges of Gangtsa La (left) and Gangchenpo West (right) Glaciers, both generally oriented towards North and showing a noticeable advance of the glacier terminus position between 1980 and Possible explanation and conclusions Here, a speculative attempt is made to explain the aspect-dependent behaviour of the changes of glacier terminus positions in the Langtang. It is well understood that possible climatic changes have different effects depending on the spatial and temporal scale considered. As a first step, the following points could be of interest: - The global warming of the atmosphere also affects the Himalayan region. This could result in a general reduction of snow cover extent. ' ' > % * * " * \?- Fig. 4 Reference level and ice edges of Pemthang Karpo West Glacier, oriented towards West and calving. The large retreat of the terminus position between 1980 and 1991 is due to ice break-off, and therefore not directly related to climatological conditions.

6 100 G. Kappenberger et al. - As a consequence, the albedo of the region is reduced, heating is increased due to larger absorption of solar radiation, and stronger thermal winds (slope and valley winds) develop. - In north-south oriented valleys the effect of a changed thermal wind system are symmetrical. In east-west oriented valleys, however, the effect is asymmetrical: as south-facing slopes receive more radiation, more heating and a stronger wind component occur on south-facing slopes compared with north-facing ones (see Fig. 5). - Stronger thermal winds also tend to increase the dust content in the air. As a result, more dust is deposited on the surface of south-facing slopes, causing a lower albedo and increased melting as compared to north-facing ones. - Stronger thermal winds also increase the formation of cumulus clouds. Larger clouds are situated slightly shifted further to the North of ridges oriented from East to West due to the different wind increase (up-slope winds are stronger over south-facing slopes as compared to north-facing ones). As a consequence, north facing glaciers get more shadow and more snow showers, resulting in a higher albedo and reduced melting. Fig. 5 Schematic diagram of a valley oriented from East to West (as for example the Langtang valley near Kyangjing) showing differences in slope and valley winds as well as the formation of convective clouds under normal snow cover conditions (left) and under a reduced snow cover extent (right). The combination of these effects tends to increase the mass of north-facing glaciers and may explain the general advance of their tongues. Further assessments of glacier mass balances as shown by Shiraiwa et al. (1992) will help to test whether these effects also increase the mass balance gradient of the glaciers in the Langtang area, as could be expected. Acknowledgements Logistic support in the field was provided by the German Agency for Technical Cooperation (GTZ, Dr. W. Grabs) and the Department of Hydrology and Meteorology (DHM) of his Majesty's Government of Nepal

7 Recent changes in glacier tongues in the Langtang Khola basin 101 (Mr. A. P. Pokhrel and his staff). All their contributions are gratefully acknowledged. REFERENCES Austrian Alpine Club (1990) Expedition maps AlpenvereinskarteLangthang Himal 1:50 000, Nr. 0/10 (West) and Nr. 0/11 (Ost), printed by Freytag-Berndt and Artaria, Vienna. Braun, L. N., Grabs, W. & Rana, B. (1993) Application of a conceptual precipitation-runoff model in the Langtang Khola Basin, Nepal Himalaya. IAHS Publ., this volume. Chen, J. (1991) Changes of Alpine climate and glacier water resources. Ziircher Geographische Schriften, Heft 46, Department of Geography, Swiss Federal Institute of Technology (ETH), Zurich, 196 pp. Motoyama, H., Ohta, T. & Yamada, T. (1987) Winter runoff in the glacierized drainage basin in Langtang Valley, Nepal Himalayas. Bull, of Glacier Research 5, Japanese Society of Snow and Ice, Ono, Y. (1985) Recent fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, reconstructed from annual moraine ridges. Z. fur Gletscherkunde und Glazialgeologie 21, Shiraiwa, T. & Watanabe, T. (1991) Late Quaternary glacial fluctuations in the Langtang valley, Nepal Himalaya, reconstructed by relative dating methods. Arctic and Alpine Res. 23(4) Shiraiwa, T. & Yamada, T. (1991) Glacier inventory of the Lantang Valley, Nepal Himalayas. Low Temperature Sci., Ser. A 50, Data Report, Shiraiwa, T., Ueno, K. & Yamada, T. (1992) Distribution of mass input on glaciers in the Langtang valley, Nepal Himalayas. Bulletin of Glacier Research 10, Watanabe, O. & Higuchi, K. (1987) Glaciological studies in Asiatic Highland region during Bull, of Glacier Research 5, Williams, R. S. (1986) Glaciers and glacial landforms. In: Geomorphology from Space - a Global Overview of Regional Landforms (ed. by N. M. Short & R. W. Blair), NASA SP-486, Washington, DC. Yamada, T., Shiraiwa, T., lida, H., Kadota, T., Watanabe, T., Rana, B., Ageta, Y. & Fushimi, H. (1992) Fluctuations of glaciers from the 1970s to 1989 in the Khumbu, Shorong and Langtang regions, Nepal Himalayas. Bull, of Glacier Research 10,

8

Revised Draft: May 8, 2000

Revised Draft: May 8, 2000 Revised Draft: May 8, 2000 Accepted for publication by the International Association of Hydrological Sciences. Paper will be presented at the Debris-Covered Glaciers Workshop in September 2000 at the University

More information

Preliminary results of mass-balance observations of Yala Glacier and analysis of temperature and precipitation gradients in Langtang Valley, Nepal

Preliminary results of mass-balance observations of Yala Glacier and analysis of temperature and precipitation gradients in Langtang Valley, Nepal Annals of Glaciology 55(66) 2014 doi: 10.3189/2014AoG66A106 9 Preliminary results of mass-balance observations of Yala Glacier and analysis of temperature and precipitation gradients in Langtang Valley,

More information

Biotic Acceleration of Glacier Melting in Yala Glacier 9 Langtang Region, Nepal Himalaya

Biotic Acceleration of Glacier Melting in Yala Glacier 9 Langtang Region, Nepal Himalaya Snow and Glacier Hydrology (Proceedings of the Kathmandu Symposium, November 992). IAHS Publ. no. 28,993. 309 Biotic Acceleration of Glacier Melting in Yala Glacier 9 Langtang Region, Nepal Himalaya SHIRO

More information

The SHARE contribution to the knowledge of the HKKH glaciers, the largest ice masses of our planet outside the polar regions

The SHARE contribution to the knowledge of the HKKH glaciers, the largest ice masses of our planet outside the polar regions The SHARE contribution to the knowledge of the HKKH glaciers, the largest ice masses of our planet outside the polar regions Claudio Smiraglia 1 with the collaboration of Guglielmina Diolaiuti 1 Christoph

More information

Observation of cryosphere

Observation of cryosphere Observation of cryosphere By Sagar Ratna Bajracharya (email: sagar.bajracharya@icimod.org) Samjwal Ratna Bajracharya Arun Bhakta Shrestha International Centre for Integrated Mountain Development Kathmandu,

More information

The Role of Glaciers in the Hydrologic Regime of the Nepal Himalaya. Donald Alford Richard Armstrong NSIDC Adina Racoviteanu NSIDC

The Role of Glaciers in the Hydrologic Regime of the Nepal Himalaya. Donald Alford Richard Armstrong NSIDC Adina Racoviteanu NSIDC The Role of Glaciers in the Hydrologic Regime of the Nepal Himalaya Donald Alford Richard Armstrong NSIDC Adina Racoviteanu NSIDC Outline of the talk Study area and data bases Area altitude distributed

More information

Warming planet, melting glaciers

Warming planet, melting glaciers Warming planet, melting glaciers Arun B Shrestha abshrestha@icimod.org International Centre for Integrated Mountain Development Kathmandu, Nepal Asia-Pacific Youth forum on Climate Actions and Mountain

More information

Glacial lakes as sentinels of climate change in Central Himalaya, Nepal

Glacial lakes as sentinels of climate change in Central Himalaya, Nepal Glacial lakes as sentinels of climate change in Central Himalaya, Nepal Sudeep Thakuri 1,2,3, Franco Salerno 1,3, Claudio Smiraglia 2,3, Carlo D Agata 2,3, Gaetano Viviano 1,3, Emanuela C. Manfredi 1,3,

More information

EXPERIENCES WITH THE NEW HYDRO-METEOROLOGICAL

EXPERIENCES WITH THE NEW HYDRO-METEOROLOGICAL EXPERIENCES WITH THE NEW HYDRO-METEOROLOGICAL STATION VERNAGTBACH LUDWIG N. BRAUN, HEIDI ESCHER-VETTER, ERICH HEUCKE, MATTHIAS SIEBERS AND MARKUS WEBER Commission for Glaciology, Bavarian Academy of Sciences

More information

Nepal Hirnalaya and Tibetan Plateau: a case study of air

Nepal Hirnalaya and Tibetan Plateau: a case study of air Annals of Glaciology 16 1992 International Glaciological Society Predictions of changes of glacier Inass balance in the Nepal Hirnalaya and Tibetan Plateau: a case study of air teinperature increase for

More information

TEACHER PAGE Trial Version

TEACHER PAGE Trial Version TEACHER PAGE Trial Version * After completion of the lesson, please take a moment to fill out the feedback form on our web site (https://www.cresis.ku.edu/education/k-12/online-data-portal)* Lesson Title:

More information

Changes of the equilibrium-line altitude since the Little Ice Age in the Nepalese Himalaya

Changes of the equilibrium-line altitude since the Little Ice Age in the Nepalese Himalaya Annals of Glaciology 48 2008 93 Changes of the equilibrium-line altitude since the Little Ice Age in the Nepalese Himalaya Rijan Bhakta KAYASTHA, 1* Sandy P. HARRISON 1,2 1 Max Planck Institute for Biogeochemistry,

More information

GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN. By Syed Naseem Abbas Gilany

GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN. By Syed Naseem Abbas Gilany GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN By Syed Naseem Abbas Gilany PRESENTATION OUTLINE Introduction Problem Statement / Rationale Objectives Material

More information

Long term mass and energy balance monitoring of Nepalese glaciers (GLACIOCLIM project): Mera and Changri Nup glaciers

Long term mass and energy balance monitoring of Nepalese glaciers (GLACIOCLIM project): Mera and Changri Nup glaciers Long term mass and energy balance monitoring of Nepalese glaciers (GLACIOCLIM project): Mera and Changri Nup glaciers ICIMOD IRD collaboration Cryosphere team Who? o o o o The cryosphere team of ICIMOD,

More information

A high resolution glacier model with debris effects in Bhutan Himalaya. Orie SASAKI Kanae Laboratory 2018/02/08 (Thu)

A high resolution glacier model with debris effects in Bhutan Himalaya. Orie SASAKI Kanae Laboratory 2018/02/08 (Thu) A high resolution glacier model with debris effects in Bhutan Himalaya Orie SASAKI Kanae Laboratory 2018/02/08 (Thu) Research flow Multiple climate data at high elevations Precipitation, air temperature

More information

The Potentially Dangerous Glacial Lakes

The Potentially Dangerous Glacial Lakes Chapter 11 The Potentially Dangerous Glacial Lakes On the basis of actively retreating glaciers and other criteria, the potentially dangerous glacial lakes were identified using the spatial and attribute

More information

GLOFs from moraine-dammed lakes: their causes and mechanisms V. Vilímek, A. Emmer

GLOFs from moraine-dammed lakes: their causes and mechanisms V. Vilímek, A. Emmer GLOFs from moraine-dammed lakes: their causes and mechanisms V. Vilímek, A. Emmer Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic vilimek@natur.cuni.cz

More information

Community resources management implications of HKH hydrological response to climate variability

Community resources management implications of HKH hydrological response to climate variability Community resources management implications of HKH hydrological response to climate variability -- presented by N. Forsythe on behalf of: H.J. Fowler, C.G. Kilsby, S. Blenkinsop, G.M. O Donnell (Newcastle

More information

Expansion of glacier lakes in recent decades in the Bhutan Himalayas

Expansion of glacier lakes in recent decades in the Bhutan Himalayas Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. no. 264, 2000. 165 Expansion of glacier lakes in recent decades in the Bhutan Himalayas

More information

CRYOSPHERE ACTIVITIES IN SOUTH AMERICA. Bolivia. Summary

CRYOSPHERE ACTIVITIES IN SOUTH AMERICA. Bolivia. Summary WORLD METEOROLOGICAL ORGANIZATION GLOBAL CRYOSPHERE WATCH (GCW) CryoNet South America Workshop First Session Santiago de Chile, Chile 27-29 October 2014 GCW-CNSA-1 / Doc. 3.1.2 Date: 20 October 2014 AGENDA

More information

Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland

Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland Félix O. Rivera Santiago Department Of Geology, University Of Puerto Rico, Mayaguez

More information

2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier?

2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier? 1 GLACIERS 1. (2pts) Define a glacier: 2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier? 3. (2pts) What is the relative size of Antarctica, Greenland,

More information

GLACIER STUDIES OF THE McCALL GLACIER, ALASKA

GLACIER STUDIES OF THE McCALL GLACIER, ALASKA GLACIER STUDIES OF THE McCALL GLACIER, ALASKA T John E. Sater* HE McCall Glacier is a long thin body of ice shaped roughly like a crescent. Its overall length is approximately 8 km. and its average width

More information

Active Glacier Protection in Austria - An adaptation strategy for glacier skiing resorts

Active Glacier Protection in Austria - An adaptation strategy for glacier skiing resorts in Austria - An adaptation strategy for glacier skiing resorts Presented by Marc Olefs Ice and Climate Group, Institute of Meteorology And Geophysics, University of Innsbruck Centre for Natural Hazard

More information

CRYOSPHERE NEPAL. BIKRAM SHRESTHA ZOOWA Sr. Hydrologist Department of Hydrology and Meteorology NEPAL 2016

CRYOSPHERE NEPAL. BIKRAM SHRESTHA ZOOWA Sr. Hydrologist Department of Hydrology and Meteorology NEPAL 2016 CRYOSPHERE NEPAL BIKRAM SHRESTHA ZOOWA Sr. Hydrologist Department of Hydrology and Meteorology NEPAL 2016 ORGANISATIONAL STRUCTURE Ministry of Science, Technology and Environment DEPARTMENT OF HYDROLOGY

More information

Shrinkage of the Khumbu Glacier, east Nepal from 1978 to 1995

Shrinkage of the Khumbu Glacier, east Nepal from 1978 to 1995 Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. no. 264, 2000. 235 Shrinkage of the Khumbu Glacier, east Nepal from 1978 to 1995 TSUTOMU

More information

Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau

Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau HYDROLOGICAL PROCESSES Hydrol. Process. 22, 2953 2958 (2008) Published online 8 October 2007 in Wiley InterScience (www.interscience.wiley.com).6865 Rapid decrease of mass balance observed in the Xiao

More information

Using of space technologies for glacierand snow- related hazards studies

Using of space technologies for glacierand snow- related hazards studies United Nations / Germany international conference on International Cooperation Towards Low-Emission and Resilient Societies Using of space technologies for glacierand snow- related hazards studies Bonn,

More information

Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area

Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area Annals of Glaciology 28 1999 # International Glaciological Society Characteristics of Khumbu Glacier, Nepal Himalaya: recent change in the debris-covered area M. Nakawo, H.Yabuki, A. Sakai Institute for

More information

NORTH CASCADE SLACIER CLIMATE PROJECT Director: Dr. Mauri S. Pelto Department of Environmental Science Nichols College, Dudley MA 01571

NORTH CASCADE SLACIER CLIMATE PROJECT Director: Dr. Mauri S. Pelto Department of Environmental Science Nichols College, Dudley MA 01571 NORTH CASCADE SLACIER CLIMATE PROJECT Director: Dr. Mauri S. Pelto Department of Environmental Science Nichols College, Dudley MA 01571 INTRODUCTION The North Cascade Glacier-Climate Project was founded

More information

Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA Fact Sheet 2009 3046 >> Pubs Warehouse > FS 2009 3046 USGS Home Contact USGS Search USGS Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA Fifty years

More information

Using LiDAR to study alpine watersheds. Chris Hopkinson, Mike Demuth, Laura Chasmer, Scott Munro, Masaki Hayashi, Karen Miller, Derek Peddle

Using LiDAR to study alpine watersheds. Chris Hopkinson, Mike Demuth, Laura Chasmer, Scott Munro, Masaki Hayashi, Karen Miller, Derek Peddle Using LiDAR to study alpine watersheds Chris Hopkinson, Mike Demuth, Laura Chasmer, Scott Munro, Masaki Hayashi, Karen Miller, Derek Peddle Light Detection And Ranging r t LASER pulse emitted and reflection

More information

Simulation of runoff processes of a continental mountain glacier in the Tian Shan, China

Simulation of runoff processes of a continental mountain glacier in the Tian Shan, China Biogeochemistry of Seasonally Snow-Covered Catchments (Proceedings of a Boulder Symposium, July 1995). IAHS Publ. no. 228, 1995. 455 Simulation of runoff processes of a continental mountain glacier in

More information

Albedo of Glacier AX 010 during the Summer Season in Shorong Himal, East Nepal*

Albedo of Glacier AX 010 during the Summer Season in Shorong Himal, East Nepal* 48 Albedo of Glacier AX 010 in Shorong Himal Albedo of Glacier AX 010 during the Summer Season in Shorong Himal, East Nepal* Tetsuo Ohata,** Koichi Ikegami** and Keiji Higuchi** Abstract Variations of

More information

Implications of the Ice Melt: A Global Overview

Implications of the Ice Melt: A Global Overview Implications of the Ice Melt: A Global Overview Hindu Kush Himalayas International Centre for Integrated Mountain Development Kathmandu, Nepal Our Ice Dependent World The 6th Open Assembly of the Northern

More information

Chapter 7 Snow and ice

Chapter 7 Snow and ice Chapter 7 Snow and ice Throughout the solar system there are different types of large ice bodies, not only water ice but also ice made up of ammonia, carbon dioxide and other substances that are gases

More information

Dynamic response of glaciers of the Tibetan Plateau to climate change

Dynamic response of glaciers of the Tibetan Plateau to climate change Christoph Schneider 1/23 Christoph Schneider Yao, Tandong Manfred Buchroithner Tobias Bolch Kang, Shichang Dieter Scherer Yang, Wei Fabien Maussion Eva Huintjes Tobias Sauter Anwesha Bhattacharya Tino

More information

Retreating Glaciers of the Himalayas: A Case Study of Gangotri Glacier Using Satellite Images

Retreating Glaciers of the Himalayas: A Case Study of Gangotri Glacier Using Satellite Images Retreating Glaciers of the Himalayas: A Case Study of Gangotri Glacier Using 1990-2009 Satellite Images Jennifer Ding Texas Academy of Mathematics and Science (TAMS) Mentor: Dr. Pinliang Dong Department

More information

P. Kasser and H. Siegenthaler, Laboratory of Hydraulics, Hydrology and

P. Kasser and H. Siegenthaler, Laboratory of Hydraulics, Hydrology and THICKNESS CHANGES OF SWISS GLACIERS (Aerial photogrammetrie maps) Silvretta, Verstancla and Chamm glaciers, surveys 1959 and 1973; 1:10,000 (1976) Limmern and Plattalva glaciers, surveys 1947 and 1977;

More information

Climate Change Impacts on Glacial Lakes and Glacierized Basins in Nepal and Implications for Water Resources

Climate Change Impacts on Glacial Lakes and Glacierized Basins in Nepal and Implications for Water Resources Climate Change Impacts on Glacial Lakes and Glacierized Basins in Nepal and Implications for Water Resources Suresh R. Chalise 1, Madan Lall Shrestha 2, Om Ratna Bajracharya 2 & Arun Bhakta Shrestha 2

More information

The dynamic response of Kolohai Glacier to climate change

The dynamic response of Kolohai Glacier to climate change Article The dynamic response of Kolohai Glacier to climate change Asifa Rashid 1, M. R. G. Sayyed 2, Fayaz. A. Bhat 3 1 Department of Geology, Savitribai Phule Pune University, Pune 411007, India 2 Department

More information

Glaciers. Reading Practice

Glaciers. Reading Practice Reading Practice A Glaciers Besides the earth s oceans, glacier ice is the largest source of water on earth. A glacier is a massive stream or sheet of ice that moves underneath itself under the influence

More information

Satellite-based measurement of the surface displacement of the largest glacier in Austria

Satellite-based measurement of the surface displacement of the largest glacier in Austria Conference Volume 4 th Symposium of the Hohe Tauern National Park for Research in Protected Areas September 17 th to 19 th, 2009, Castle of Kaprun pages 145-149 Satellite-based measurement of the surface

More information

Twentieth century surface elevation change of the Miage Glacier, Italian Alps

Twentieth century surface elevation change of the Miage Glacier, Italian Alps Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. no. 264, 2000. 219 Twentieth century surface elevation change of the Miage Glacier, Italian

More information

Topographical survey of end moraine and dead ice area at Imja Glacial Lake in,**+ and,**,

Topographical survey of end moraine and dead ice area at Imja Glacial Lake in,**+ and,**, Bulletin of Glaciological Research,. (,**1),3-0 Japanese Society of Snow and Ice 29 Topographical survey of end moraine and dead ice area at Imja Glacial Lake in,**+ and,**, Akiko SAKAI + *, Mitsuyoshi

More information

3D SURVEYING AND VISUALIZATION OF THE BIGGEST ICE CAVE ON EARTH

3D SURVEYING AND VISUALIZATION OF THE BIGGEST ICE CAVE ON EARTH CO-015 3D SURVEYING AND VISUALIZATION OF THE BIGGEST ICE CAVE ON EARTH BUCHROITHNER M.F., MILIUS J., PETTERS C. Dresden University of Technology, DRESDEN, GERMANY ABSTRACT The paper deals with the first

More information

Climate Change Impacts on Water Resources of Nepal with Reference to the Glaciers in the Langtang Himalayas

Climate Change Impacts on Water Resources of Nepal with Reference to the Glaciers in the Langtang Himalayas 58 N. P. Chaulagain August 2009 Climate Change Impacts on Water Resources of Nepal with Reference to the Glaciers in the Langtang Himalayas Narayan Prasad Chaulagain Alternative Energy Promotion Centre,

More information

Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal

Seasonal variation of ice melting on varying layers of debris of Lirung Glacier, Langtang Valley, Nepal Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). 21 Seasonal variation of ice melting on varying layers

More information

Assessment of glacier water resources based on the Glacier Inventory of China

Assessment of glacier water resources based on the Glacier Inventory of China 104 Annals of Glaciology 50(53) 2009 Assessment of glacier water resources based on the Glacier Inventory of China KANG Ersi, LIU Chaohai, XIE Zichu, LI Xin, SHEN Yongping Cold and Arid Regions Environmental

More information

GRANDE News Letter Volume1, No.3, December 2012

GRANDE News Letter Volume1, No.3, December 2012 GRANDE News Letter Volume1, No.3, December 2012 Building a water management system in La Paz, Bolivia Climate change is a phenomenon that affects the entire world, but its impact on people differs depending

More information

Geomorphology. Glacial Flow and Reconstruction

Geomorphology. Glacial Flow and Reconstruction Geomorphology Glacial Flow and Reconstruction We will use simple mathematical models to understand ice dynamics, recreate a profile of the Laurentide ice sheet, and determine the climate change of the

More information

Evolution of Ossoue glacier, French Pyrenees: Tools and methods to generate a regional climate-proxy

Evolution of Ossoue glacier, French Pyrenees: Tools and methods to generate a regional climate-proxy Evolution of Ossoue glacier, French Pyrenees: Tools and methods to generate a regional climate-proxy Renaud MARTI ab, Simon GASCOIN a, Thomas HOUET b, Dominique LAFFLY b, Pierre RENE c a CESBIO b GEODE,

More information

Present health and dynamics of glaciers in the Himalayas and Arctic

Present health and dynamics of glaciers in the Himalayas and Arctic Present health and dynamics of glaciers in the Himalayas and Arctic AL. Ramanathan and Glacilogy Team School of Environmental Sciences, Jawaharlal Nehru University AL. Ramanthan, Parmanand Sharma, Arindan

More information

International Centre for Integrated Mountain Development

International Centre for Integrated Mountain Development Monitoring and assessment of changes in Glaciers, Snow, and Glacio-hydrology in the Hindu Kush - Himalaya International Centre for Integrated Mountain Development Kathmandu, Nepal The 3rd Third Pole Environment

More information

Modelling the Response of Mountain Glacier Discharge to Climate Warming

Modelling the Response of Mountain Glacier Discharge to Climate Warming Modelling the Response of Mountain Glacier Discharge to Climate Warming Regine Hock 1*, Peter Jansson 1, and Ludwig N. Braun 2 1 Department of Physical Geography and Quaternary Geology, Stockholm University,

More information

A - GENERAL INFORMATION

A - GENERAL INFORMATION A - GENERAL INFORMATION NOTES ON THE COMPLETION OF THE DATA SHEET This data sheet should be completed in cases of new glacier entries related to available fluctuation data # ; for glaciers already existing

More information

The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science.

The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science. The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science. Don J. Easterbrook, Dept. of Geology, Western Washington University, Bellingham, WA The recent Portland

More information

Climate Change and State of Himalayan Glaciers: Issues, Challenges and Facts

Climate Change and State of Himalayan Glaciers: Issues, Challenges and Facts Climate Change and State of Himalayan Glaciers: Issues, Challenges and Facts D.P. Dobhal dpdobhal@wihg.res.in Wadia Institute of Himalayan Geology Dehra Dun Major Issues Are the Himalayan glaciers receding

More information

宇宙から見た中央アジア, パミールのフェドチェンコ氷河の特徴

宇宙から見た中央アジア, パミールのフェドチェンコ氷河の特徴 Geographical Studies 宇宙から見た中央アジア, パミールのフェドチェンコ氷河の特徴 * 岩田修二 キーワード 要旨 FG Shan, where precipitation is greatest in summer. 3 General configuration of Fedchenko Glacier (1) Plan form of the glacial basin Fedchenko

More information

Monitoring of Mountain Glacial Variations in Northern Pakistan, from 1992 to 2008 using Landsat and ALOS Data. R. Jilani, M.Haq, A.

Monitoring of Mountain Glacial Variations in Northern Pakistan, from 1992 to 2008 using Landsat and ALOS Data. R. Jilani, M.Haq, A. Monitoring of Mountain Glacial Variations in Northern Pakistan, from 1992 to 2008 using Landsat and ALOS Data R. Jilani, M.Haq, A. Naseer Pakistan Space & Upper Atmosphere Research Commission (SUPARCO)

More information

Long term Forecast of Glaciation and Evaluation of Glacial Resources of the Central Asia with the Use of Isotopic Methods

Long term Forecast of Glaciation and Evaluation of Glacial Resources of the Central Asia with the Use of Isotopic Methods Long term Forecast of Glaciation and Evaluation of Glacial Resources of the Central Asia with the Use of Isotopic Methods Vladimir I. SHATRAVIN, Tamara V. TUZOVA, Institute of Water Problems and Hydropower

More information

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S ICE AGE TREKKING

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S ICE AGE TREKKING MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S ICE AGE TREKKING CONTENTS I. Enduring Knowledge... 3 II. Teacher Background... 3 III. Before Viewing this Video... 5 IV. Viewing Guide... 5 V. Discussion

More information

Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau

Characteristics and climatic sensitivities of runoff from a cold-type glacier on the Tibetan Plateau HYDROLOGICAL PROCESSES Hydrol. Process. 21, 2882 2891 (2007) Published online 7 December 2006 in Wiley InterScience (www.interscience.wiley.com).6505 Characteristics and climatic sensitivities of runoff

More information

EVALUATION OF DIFFERENT METHODS FOR GLACIER MAPPING USING LANDSAT TM

EVALUATION OF DIFFERENT METHODS FOR GLACIER MAPPING USING LANDSAT TM EVALUATION OF DIFFERENT METHODS FOR GLACIER MAPPING USING LANDSAT TM Frank Paul Department of Geography, University of Zurich, Switzerland Winterthurer Strasse 190, 8057 Zürich E-mail: fpaul@geo.unizh.ch,

More information

J. Oerlemans - SIMPLE GLACIER MODELS

J. Oerlemans - SIMPLE GLACIER MODELS J. Oerlemans - SIMPE GACIER MODES Figure 1. The slope of a glacier determines to a large extent its sensitivity to climate change. 1. A slab of ice on a sloping bed The really simple glacier has a uniform

More information

Status of the Glacier Research in the HKH region. By Dr. S. I. Hasnain School of Environmental Sciences Jawahar Lal Nehru University INDIA

Status of the Glacier Research in the HKH region. By Dr. S. I. Hasnain School of Environmental Sciences Jawahar Lal Nehru University INDIA Status of the Glacier Research in the HKH region By Dr. S. I. Hasnain School of Environmental Sciences Jawahar Lal Nehru University INDIA The climate of Himalaya is essentially dominated by the south-west

More information

Chapter 16 Glaciers and Glaciations

Chapter 16 Glaciers and Glaciations Chapter 16 Glaciers and Glaciations Name: Page 419-454 (2nd Ed.) ; Page 406-439 (1st Ed.) Part A: Anticipation Guide: Please read through these statements before reading and mark them as true or false.

More information

Cryosphere Monitoring Programme in the Hindu Kush Himalayas and Cryosphere Knowledge Hub

Cryosphere Monitoring Programme in the Hindu Kush Himalayas and Cryosphere Knowledge Hub Cryosphere Monitoring Programme in the Hindu Kush Himalayas and Cryosphere Knowledge Hub Pradeep Mool Programme Coordinator Cryosphere Initiative ICIMOD The First Asian CryoNet Workshop International Centre

More information

Glacier Lakes and Outburst Floods In the Nepal Himalaya

Glacier Lakes and Outburst Floods In the Nepal Himalaya Snow and Glacier Hydrology (Proceedings of the Kathmandu Symposium, November 1992). IAHSPubl. no. 218,1993. 319 Glacier Lakes and Outburst Floods In the Nepal Himalaya T. YAMABA 1 & C. K. SHARMA 2 1 The

More information

New measurements techniques

New measurements techniques 2 nd Asia CryoNetWorkshop New measurements techniques Xiao Cunde (SKLCS/CAS and CAMS/CMA) Feb.5, 2016, Salekhard, Russia Outline Definition of New Some relative newly-used techniques in China -- Eddy covariance

More information

GLACIATION. The Last Ice Age (see Chapter 12) and. Pleistocene Ice Cap. Glacial Dynamics 10/2/2012. Laurentide Ice Sheet over NYS

GLACIATION. The Last Ice Age (see Chapter 12) and. Pleistocene Ice Cap. Glacial Dynamics 10/2/2012. Laurentide Ice Sheet over NYS GLACIATION and New York State Prof. Anthony Grande The Last Ice Age (see Chapter 1) The Pleistocene Epoch began 1.6 mya. During this time, climates grew colder. There were numerous ice ages starting 100,000000

More information

Regional Glacier Mass Balance Variation in the North Cascades

Regional Glacier Mass Balance Variation in the North Cascades 1 STUDY PLAN NATURAL RESOURCE PROTECTION PROGRAM Regional Glacier Mass Balance Variation in the North Cascades PRINCIPLE INVESTIGATORS JON L. RIEDEL NORTH CASCADES NATIONAL PARK ANDREW FOUNTAIN AND BOB

More information

Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College

Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College Glaciers Glaciers are parts of two basic cycles: 1. Hydrologic cycle 2. Rock cycle A glacier is a thick mass of ice

More information

The influence of a debris cover on the midsummer discharge of Dome Glacier, Canadian Rocky Mountains

The influence of a debris cover on the midsummer discharge of Dome Glacier, Canadian Rocky Mountains Debris-Covered Glaciers (Proceedings of a workshop held at Seattle, Washington, USA, September 2000). IAHS Publ. no. 264, 2000. 25 The influence of a debris cover on the midsummer discharge of Dome Glacier,

More information

How Glaciers Change the World By ReadWorks

How Glaciers Change the World By ReadWorks How Glaciers Change the World How Glaciers Change the World By ReadWorks Glaciers are large masses of ice that can be found in either the oceans or on land. These large bodies of frozen water have big

More information

Tidewater Glaciers: McCarthy 2018 Notes

Tidewater Glaciers: McCarthy 2018 Notes Tidewater Glaciers: McCarthy 2018 Notes Martin Truffer, University of Alaska Fairbanks June 1, 2018 What makes water terminating glaciers special? In a normal glacier surface mass balance is always close

More information

Adaptation opportunities (and challenges) with glacier melting and Glacier Lake Outburst Floods (GLOFs) in the HKH region

Adaptation opportunities (and challenges) with glacier melting and Glacier Lake Outburst Floods (GLOFs) in the HKH region Adaptation opportunities (and challenges) with glacier melting and Glacier Lake Outburst Floods (GLOFs) in the HKH region Jeffrey S. Kargel Department of Hydrology & Water Resources University of Arizona

More information

Eastern Snow Conference: 2017 Student Award Recipient

Eastern Snow Conference: 2017 Student Award Recipient Eastern Snow Conference: 2017 Student Award Recipient Presentation title: Tracking changes in iceberg calving events and characteristics from Trinity and Wykeham Glaciers, SE Ellesmere, Canada Authors:

More information

Glaciers Earth 9th Edition Chapter 18 Mass wasting: summary in haiku form Glaciers Glaciers Glaciers Glaciers Formation of glacial ice

Glaciers Earth 9th Edition Chapter 18 Mass wasting: summary in haiku form Glaciers Glaciers Glaciers Glaciers Formation of glacial ice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Earth 9 th Edition Chapter 18 Mass wasting: summary in haiku form Ten thousand years thence big glaciers began to melt - called "global warming." are parts of two basic

More information

Glaciers. Glacier Dynamics. Glaciers and Glaciation. East Greenland. Types of Glaciers. Chapter 16

Glaciers. Glacier Dynamics. Glaciers and Glaciation. East Greenland. Types of Glaciers. Chapter 16 Chapter 16 Glaciers A glacier is a large, permanent (nonseasonal) mass of ice that is formed on land and moves under the force of gravity. Glaciers may form anywhere that snow accumulation exceeds seasonal

More information

WATER, ICE, AND METEOROLOGICAL MEASUREMENTS AT SOUTH CASCADE GLACIER, WASHINGTON, BALANCE YEARS

WATER, ICE, AND METEOROLOGICAL MEASUREMENTS AT SOUTH CASCADE GLACIER, WASHINGTON, BALANCE YEARS WATER, ICE, AND METEOROLOGICAL MEASUREMENTS AT SOUTH CASCADE GLACIER, WASHINGTON, 2-1 BALANCE YEARS U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 2-4165 South Cascade Glacier, looking approximately

More information

Shaping of North America. Physical Geography II of the United States and Canada. The Last Ice Age. The Ice Age. Pleistocene Polar Ice Cap 2/14/2013

Shaping of North America. Physical Geography II of the United States and Canada. The Last Ice Age. The Ice Age. Pleistocene Polar Ice Cap 2/14/2013 Physical Geography II of the United States and Canada Prof. Anthony Grande AFG 2012 Shaping of North America The chief shaper of the landscape of North America is and has been running water. Glaciation

More information

READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean

READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall 2018 63 pts NAME DUE: Tuesday, October 23 Glaciers: A Part of Two Basic Cycles (p. 192-195) 1. Match each type of glacier to its description: (2 pts)

More information

Mapping the Snout. Subjects. Skills. Materials

Mapping the Snout. Subjects. Skills. Materials Subjects Mapping the Snout science math physical education Skills measuring cooperative action inferring map reading data interpretation questioning Materials - rulers - Mapping the Snout outline map and

More information

Snow/Ice melt and Glacial Lake Outburst Flood in Himalayan region

Snow/Ice melt and Glacial Lake Outburst Flood in Himalayan region Snow/Ice melt and Glacial Lake Outburst Flood in Himalayan region Dr. SANJAY K JAIN NATIONAL INSTITUTE OF HYDROLOGY ROORKEE Modelling and management flood risk in mountain areas 17-19 Feb., 2015 at Sacramento,

More information

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S SEARCHING GLACIAL FEATURES

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S SEARCHING GLACIAL FEATURES MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S SEARCHING GLACIAL FEATURES CONTENTS I. Enduring Knowledge... 3 II. Teacher Background... 3 III. Before Viewing the Video... 5 IV. Viewing Guide...

More information

Impacts of climate change and water induced disasters in high altitude on hydropower development in Nepal. Rijan Bhakta Kayastha, D. Sc.

Impacts of climate change and water induced disasters in high altitude on hydropower development in Nepal. Rijan Bhakta Kayastha, D. Sc. Impacts of climate change and water induced disasters in high altitude on hydropower development in Nepal Rijan Bhakta Kayastha, D. Sc. Associate Professor and Coordinator Himalayan Cryosphere, Climate

More information

Seasonal variations of water temperature and discharge in rivers draining ice free and partially glacierised Alpine basins

Seasonal variations of water temperature and discharge in rivers draining ice free and partially glacierised Alpine basins Seasonal variations of water temperature and discharge in rivers draining ice free and partially glacierised Alpine basins Collins, DN Title Authors Type URL Published Date 2009 Seasonal variations of

More information

Snow, Glacier and GLOF

Snow, Glacier and GLOF Snow, Glacier and GLOF & Report on Demonstration River Basin Activities Upper Indus Basin The 5th International Coordination Group (ICG) Meeting GEOSS Asian Water Cycle Initiative (AWCI) Tokyo, Japan,

More information

Glaciological and Historical Analyses at the Boundary Glacier, Canadian Rocky Mountains

Glaciological and Historical Analyses at the Boundary Glacier, Canadian Rocky Mountains Western Geography, 10/11(2000/01), pp. 30 42 Western Division, Canadian Association of Geographers Glaciological and Historical Analyses at the Boundary Glacier, Canadian Rocky Mountains N.K. Jones Professor

More information

Habitat of Large Glaciers and Snow Leopards

Habitat of Large Glaciers and Snow Leopards Headwaters of High Mountain Asia - Habitat of Large Glaciers and Snow Leopards International Snow Leopard Day A Collaborative Effort to Assess the Role of Glaciers and Seasonal Snow Cover in the Hydrology

More information

Lidar Imagery Reveals Maine's Land Surface in Unprecedented Detail

Lidar Imagery Reveals Maine's Land Surface in Unprecedented Detail Maine Geologic Facts and Localities December, 2011 Lidar Imagery Reveals Maine's Land Surface in Unprecedented Detail Text by Woodrow Thompson, Department of Agriculture, Conservation & Forestry 1 Introduction

More information

FRANCE : HOW TO IMPROVE THE AVALANCHE KNOWLEDGE OF MOUNTAIN GUIDES? THE ANSWER OF THE FRENCH MOUNTAIN GUIDES ASSOCIATION. Alain Duclos 1 TRANSMONTAGNE

FRANCE : HOW TO IMPROVE THE AVALANCHE KNOWLEDGE OF MOUNTAIN GUIDES? THE ANSWER OF THE FRENCH MOUNTAIN GUIDES ASSOCIATION. Alain Duclos 1 TRANSMONTAGNE FRANCE : HOW TO IMPROVE THE AVALANCHE KNOWLEDGE OF MOUNTAIN GUIDES? THE ANSWER OF THE FRENCH MOUNTAIN GUIDES ASSOCIATION ABSTRACT : Alain Duclos 1 TRANSMONTAGNE Claude Rey 2 SNGM The French Mountain Guides

More information

TEMPERATURE VARIABILITY IN HIMALAYAS AND THREAT TO THE GLACIERS IN THE REGION : A STUDY AIDED BY REMOTE SENSING AND GIS

TEMPERATURE VARIABILITY IN HIMALAYAS AND THREAT TO THE GLACIERS IN THE REGION : A STUDY AIDED BY REMOTE SENSING AND GIS TEMPERATURE VARIABILITY IN HIMALAYAS AND THREAT TO THE GLACIERS IN THE REGION : A STUDY AIDED BY REMOTE SENSING AND GIS Zahoor-Ul-Islam*, Liaqat Ali Khan Rao 1, Ab. Hamid Zargar 2 Sarfaraz Ahmad, and Md.

More information

1.4 Understand how moving ice acts as an agent of erosion and deposition. (Chap. 2)

1.4 Understand how moving ice acts as an agent of erosion and deposition. (Chap. 2) 1.4 Understand how moving ice acts as an agent of erosion and deposition. (Chap. 2) There are two types of glaciation. Alpine Glaciation Continental Glaciation Distinguish between the terms alpine glaciation

More information

glacier Little Ice Age continental glacier valley glacier ice cap glaciation firn glacial ice plastic flow basal slip Chapter 14

glacier Little Ice Age continental glacier valley glacier ice cap glaciation firn glacial ice plastic flow basal slip Chapter 14 Little Ice Age glacier valley glacier continental glacier ice cap glaciation firn glacial ice plastic flow basal slip glacial budget zone of accumulation zone of wastage glacial surge abrasion glacial

More information

Climate Change Impact on Water Resources of Pakistan

Climate Change Impact on Water Resources of Pakistan Pakistan Water and Power Development Authority (WAPDA) Climate Change Impact on Water Resources of Pakistan Glacier Monitoring & Research Centre Muhammad Arshad Pervez Project Director (GMRC) Outline of

More information

The impact of climate change on glaciers and glacial runoff in Iceland

The impact of climate change on glaciers and glacial runoff in Iceland The impact of climate change on glaciers and glacial runoff in Iceland Bergur Einarsson 1, Tómas Jóhannesson 1, Guðfinna Aðalgeirsdóttir 2, Helgi Björnsson 2, Philippe Crochet 1, Sverrir Guðmundsson 2,

More information

Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: n zne:

Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: n zne: Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: The area of a glacier where mass is lost through melting or

More information

THE DISEQUILBRIUM OF NORTH CASCADE, WASHINGTON GLACIERS

THE DISEQUILBRIUM OF NORTH CASCADE, WASHINGTON GLACIERS THE DISEQUILBRIUM OF NORTH CASCADE, WASHINGTON GLACIERS CIRMOUNT 2006, Mount Hood, OR Mauri S. Pelto, North Cascade Glacier Climate Project, Nichols College Dudley, MA 01571 peltoms@nichols.edu NORTH CASCADE

More information