Platte West Well Field A Protective Modeling Approach

Similar documents
Enhancing hydrological data management and exchange procedures

Hydrological study for the operation of Aposelemis reservoir Extended abstract

3.0 OVERVIEW OF HUECO BOLSON

SECTION 3 GENERAL DESCRIPTION OF THE RIVER BASIN

HYDRAULIC DESIGN OF THE TOURISTIC BERTHING IN ASWAN CITY

Thirteenth International Water Technology Conference, IWTC , Hurghada, Egypt 1249

USGS Methods of Collecting High Water Marks (HWMs)

Managing water supply resources in karstic environment (temperate climate)

Runway Roughness Evaluation- Boeing Bump Methodology

FLOW REDUCTION IMPACTS ALONG RIVER NILE IN EGYPT

Simulation of disturbances and modelling of expected train passenger delays

Duncan Hastie, P.E. Dewberry

Water Quality Trends for Patchogue Bay

Blocking Sea Intrusion in Brackish Karstic Springs

4. Hydrology of the Olentangy River Watershed

> Aircraft Noise. Bankstown Airport Master Plan 2004/05 > 96

EL PASO S DESALINATION EFFORTS

Roadmapping Breakout Session Overview

International Osoyoos Lake Board of Control Annual Report to the International Joint Commission

Water Quality Trends for Conscience Bay

International Osoyoos Lake Board of Control Annual Report to the International Joint Commission

U-Park Wyatt Street Temporary Event Space

Mercer SCOOT Adaptive Signal Control. Karl Typolt, Transpo Group PSRC RTOC July 6th, 2017

Runway Roughness Evaluation- Boeing Bump Methodology

Runway Roughness Evaluation- Boeing Bump Methodology

ASSESSMENT OF FECAL COLIFORM IN LITTLE RABBIT CREEK AND LITTLE SURVIVAL CREEK

NOISE ABATEMENT PROCEDURES

PERFORMANCE MEASURE INFORMATION SHEET #16

VI. ALTERNATIVES TO THE MASTER PLAN C. RENOVATED EAST BUILDING ALTERNATIVE

APA NOISE REPORT. August 2018

APA NOISE REPORT. January 2018

PRELIMINARY WEB DOCUMENT

Hydraulic Report. Trail 5 Snowmobile Trail Over Mulligan Creek. Prepared By: COLEMAN ENGINEERING COMPANY Karisa V. Falls, P.E.

Agenda Report. Spruce Street Outlet Drainage Improvements Tower Road Relief Sewer

Watershed Runoff Analysis

APA NOISE REPORT. August 2017

Perth Noise Abatement Procedures - Change to Preferred Runways

UAS to GIS Utilizing a low-cost Unmanned Aerial System (UAS) for Coastal Erosion Monitoring

Oak Ridges Moraine: Southern Ontario's Sponge

$6.60 NEW SOUTH WALES. Both METRIC and Feet and Inches TIMES: am/pm Sunrise/Sunset Moon Phases Moon Rise/Set DIARY NOTES.

3. Proposed Midwest Regional Rail System

A Pilot s perspective

Tsunami Survey Results in the NPS and Reproduction Analysis Using Tsunami Inversion

Establishing a Risk-Based Separation Standard for Unmanned Aircraft Self Separation

EXPERIMENTAL ANALYSIS OF THE INTEGRATION OF MIXED SURVEILLANCE FREQUENCY INTO OCEANIC ATC OPERATIONS

Introduction. The System. Model Limitations, Assumptions, and Parameters. Optional Services Tech Memo

ENVIRONMENT ACTION PLAN

TransAction Overview. Introduction. Vision. NVTA Jurisdictions

RNP AR and Air Traffic Management

DIDYMO SURVEY, LOWER FRYINGPAN RIVER, BASALT, COLORADO 2015

$6.60 NEW SOUTH WALES. Both METRIC and Feet and Inches TIMES: am/pm Sunrise/Sunset Moon Phases Moon Rise/Set DIARY NOTES.

HOSE ASSEMBLY CLEANLINESS

NEW SOUTH WALES. Both METRIC and Feet and Inches TIMES: am/pm Sunrise/Sunset Moon Phases Moon Rise/Set DIARY NOTES.

A Methodology for Integrated Conceptual Design of Aircraft Configuration and Operation to Reduce Environmental Impact

Assessment of Pathogen Strategies

Get a higher Return On Investment with Wärtsilä

SANTA MONICA AIRPORT VISIONING PROCESS: PHASE III FINDINGS AND NEXT STEP RECOMMENDATIONS APRIL 30, 2013

International Osoyoos Lake Board of Control Annual Report to the International Joint Commission

Challenges in Complex Procedure Design Validation

Cruise Industry Perspective on OWS and Waste Management

Northeast Stoney Trail In Calgary, Alberta

Reducing Garbage-In for Discrete Choice Model Estimation

Figure 3.1. Foreign Airport Assessment Aid

Acres Monterey County, California OPEN GROUND IN SALINAS VALLEY VEGETABLE AND STRAWBERRY PROPERTY

Depeaking Optimization of Air Traffic Systems

Noise Abatement Arrival Procedures at Louisville International Airport. Prof. John-Paul Clarke Georgia Institute of Technology

EUROCONTROL and the Airport Package

Agenda: SASP SAC Meeting 3

Saint Petersburg-Clearwater International Airport. Airspace & Instrument Approach Analysis

SUTTER COUNTY. General Plan Update Technical Background Report

Aircraft Noise. Why Aircraft Noise Calculations? Aircraft Noise. SoundPLAN s Aircraft Noise Module

Recommendations for Northbound Aircraft Departure Concerns over South Minneapolis

L 342/20 Official Journal of the European Union

WELCOME TO THE OPEN HOUSE

CITY OF LYNDEN STORMWATER MANAGEMENT PROGRAM REPORT MARCH 1, 2016

AEROSPACE RECOMMENDED PRACTICE

An Automated Airspace Concept for the Next Generation Air Traffic Control System

AN INTEGRATED SAFETY AND OPERATIONAL AVAILABILITY ANALYSIS SYSTEM FOR AIR TRAFFIC SYSTEMS

Portland Water District Sebago Lake Monitoring Programs Lower Bay Bacteria Monitoring Presenting data from 1977 to 2018 Laurel Jackson

Advances for Pipelines

RNP AR APCH Approvals: An Operator s Perspective

NOISE AND FLIGHT PATH MONITORING SYSTEM BRISBANE QUARTERLY REPORT JULY - SEPTEMBER 2011

Disruptive Technologies in Air Traffic Management (ATM) - Example: flight centric operations (sectorless ATM)

NOISE AND FLIGHT PATH MONITORING SYSTEM BRISBANE QUARTERLY REPORT OCTOBER - DECEMBER 2013

THIRTEENTH AIR NAVIGATION CONFERENCE

IATA Air Carrier Self Audit Checklist Analysis Questionnaire

SIMULATION MODELING AND ANALYSIS OF A NEW INTERNATIONAL TERMINAL

MANAGING FRESHWATER INFLOWS TO ESTUARIES

Analysis of Operational Impacts of Continuous Descent Arrivals (CDA) using runwaysimulator

Executive Summary. MASTER PLAN UPDATE Fort Collins-Loveland Municipal Airport

Welcome to Public Information Workshop 1. San Francisco International Airport FAR Part 150 Study Update Noise Exposure Map Report

Unmanned Aircraft System Loss of Link Procedure Evaluation Methodology

COMMISSION OF THE EUROPEAN COMMUNITIES. Draft. COMMISSION REGULATION (EU) No /2010

AIRSERVICES AUSTRALI A

Lake Manitoba Lake St. Martin

West Gate IAC Hearing. Review of vibration and regenerated noise from construction

China Creek North Park Upgrades and Glen Pump Station. Park Board Committee Meeting Monday, July 10, 2017

Appendix B Ultimate Airport Capacity and Delay Simulation Modeling Analysis

Why are the underground fuel tanks being removed and replaced with above ground tanks?

2015 Annual Water Report. City of Revelstoke Engineering and Public Works Department

Transcription:

Platte West Well Field A Protective Modeling Approach Presented to: 2007 Eastern South Dakota Water Conference / 52 nd Annual Midwest Ground Water Conference June 25, 2007 Presented by: Luca DeAngelis, P.E., P.G. Layne Christensen Co-authors: Glenn Dostal, P.E. (HDR), Kevin Tobin, P.E. (MUD)

Overview Project Location Saunders and Douglas Counties, Nebraska Project Objectives Primary - Provide additional water supply to Omaha Metro Area Meet demand estimates for year 2030 Secondary - Increase system reliability Omaha currently gets 70% of drinking water from Missouri River

Omaha - Water Supply Sources 158 158 mgd mgd Florence Florence Surface Surface Water Water 100 100 mgd mgd Platte Platte West West Wells Wells 16 16 mgd mgd Peak Peak shaving shaving Bedrock Bedrock Wells Wells Study Study Area Area 60 mgd Platte South Wells

Major Project Components Well Field 42 vertical wells with groundwater designation Direct recharge from the Platte River Combination of river and storage wells 2 48-inch diameter pipes crossing Platte River Compliance with Clean Water Act Section 404 Permit 100 million gallon per day (mgd) water treatment plant

EW-8 EW-11 EW-10 EW-9 EW-7 EW-6 EW-5 EW-4 EW-3 EW-2 EW-1 Unique Project Setting 7 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 4 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 5 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 36 31 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 Ithaca Mead Superfund Superfund Site Site Yutan Venice Wann Platte Platte West West Well Well Field Field 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 Platte West well field located: Three miles from a Superfund Site Five miles from the City of Lincoln, NE well field 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 Memphis Lincoln Lincoln Well Well Field Field 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 Ashland 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 3 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 7 8 9 10 11 12 7 9 10 1

Role of Groundwater Modeling Purpose Ensure compliance with Clean Water Act Section 404 Permit Evaluate impact of well field operation on other users Impact on Superfund Site Impact on Lincoln well field Develop contingencies for Platte River Low flow conditions River contamination scenarios

404 Permit Overview Clean Water Act Section 404 Permit Responsible agencies United States Army Corps of Engineers (USACE) United States Environmental Protection Agency (EPA) Restricts well field pumping Annual average of 52 mgd Maximum daily rate 104 mgd Specifies no impact on Superfund Site No impact on existing containment system No impact on contaminant transport

Protective Modeling Concept All groundwater modeling involves professional judgment Protective modeling: Develop a model framed with real world data Use model input parameters that will overestimate impact from operation of Platte West well field Provide realistic (probable) estimates for system response Ensure that any errors are conservative or protective to desired outcome Be protective of Superfund site cleanup efforts and Lincoln well field water rights Integrate groundwater and surface water Review historical streamflow record Establish low flow quantiles Review historical groundwater data Review groundwater/surface water interaction

Protective Model Scenarios Flow (cfs) 100000 10000 1000 Platte River Flow Frequency Curve Leshara Gauge Ave. Ave. flow flow = 4,600 4,600 cubic cubic feet feet per per second second (cfs) (cfs) 100 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Exceedance Frequency (%) Streamflow Average October 2003 Mar-05 Period of Record 1990 to 2004 99% 99% flow flow = 640 640 cfs cfs Develop reasonable worst case scenarios Groundwater systems near rivers are most stressed in the summer High water demand Low surface water flow Protective simulations should reproduce summer conditions Platte River simulate summer flows at 99% exceedance (100 year return period) Simulate highest well field flow 75 mgd for July and August Include pumping from other well fields Include crop irrigation (over 500 wells 150 mgd!)

Hydrogeologic Setting GW Flow Shaded Relief Map of Study Area GW Flow Platte River Alluvial Aquifer Todd Valley: Ancestral stream valley of Platte River. Not connected to present day Platte River.

Modeling Procedure Desktop Study Develop conceptual model Extend computer model to physical boundaries!!! Collect Field Measurements Head targets October 2003 and March 2005 Flux targets Seven United States Geological Survey (USGS) stream Construct model and calibrate to steady-state state Model constructed using MODFLOW (flow model) and MODPATH (particle tracking model) codes Conduct a sensitivity analysis of calibration Use ASTM standard as guidance (279 model simulations) Predictive simulations Steady State simulations Transient simulations Six year flow field Predictive Sensitivity Analysis Approximately 60 model simulations!

Model Construction 29 28 27 26 25 29 32 33 34 35 36 32 33 34 5 4 3 2 1 6 5 4 3 2 1 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 Colon 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 1 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 2 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 2 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 Wahoo Cedar Bluff 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 28 27 26 29 28 26 25 30 26 25 30 27 Sweadeburg 31 32 33 34 35 36 31 28 Ithaca 27 35 36 Mead 31 6 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 32 5 4 3 2 Mercer Leshara Memphis Yutan 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 35 36 1 Ashland 31 6 Valley Venice Wann 32 33 5 4 3 2 1 Elk City Waterloo Model grid smallest cells 100 ft x 100 ft Model Area 650 Square Miles Model Boundaries River Cell No Flow Cell General Head Boundary Cell Agricultural Drain Tile Cell

94-5 94-6 NWann SWann 94-7 90-10 94-4 94-3 Model Calibration 29 28 27 26 25 29 28 27 35 36 36 32 35 31 32 33 34 35 36 32 33 34 Cedar Bluff 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 16 15 14 13 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 9 10 11 12 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 1 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 2 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 2 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 Wahoo Colon 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 29 28 27 26 29 28 26 25 30 26 25 30 27 Sweadeburg 31 32 33 34 35 36 31 Ithaca Mead Mercer Leshara Yutan 31 32 33 6 5 4 3 2 1 Valley Venice Elk City Waterloo 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 Memphis 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 Ashland Wann 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 10 11 Calibration or History Matching A demonstration that the model is capable of reproducing measured heads, flows, and response to stress as observed in the real world Monitoring Well/ Calibration Target 107 monitoring well locations

Goals for Calibration - History Matching Key to transition of model from conceptual to predictive 1. Exhibit a calibration error between simulated and observed water levels of less than 5% 2. Visual match Observed groundwater flow direction and gradients Superfund Site plume movement 3. Coherence with expected values for streamflow Baseflow values in creeks, less than or equal to 10 percentile of measured flow in creek 4. Exhibit less than a 1% difference in water mass balance

Calibration Results - 2005 Numerical Calibration NRMS = 1.4% ARM = 2.1 feet Scattergram: Shows random distribution of error Conclusion Excellent statistical calibration with random error

Calibration - History Match to Superfund Plume 31 32 33 34 35 36 31 6 5 4 3 2 1 6 5 4 3 MW63B 7 8 9 10 11 12 7 8 9 10 5 year - 1965 18 17 16 15 14 13 18 17 16 MW40B MW41B10 year - 1970 MW55B MW53B MW56B 20 year - 1980 19 20 21 22 23 24 19 20 21 MW30B MW43B MW31B MW33B MW64B 15 year - 1975 MW52BMW54B 25 year - 1985 30year - 1990 30 29 28 27 26 25 30 29 28 MW42B MW44B Particles Particles released released in in 1960 1960 and and tracked tracked forwards forwards under under no-pumping no-pumping scenario scenario Model Model predicts predicts TCE TCE in in Johnson Johnson Creek Creek between between 1990-1995 1990-1995 1995 USACE USACE reports reports TCE TCE detections detections in in Johnson Johnson Creek Creek in in 1997 1997 (maximum (maximum concentration concentration detected detected at at location location indicated). indicated). MW29B MW32B MW34B MW45B MW46B MW-39A Wann MW36B 31 32 33 34 35 36 31 32 33 MW35B MW-38A Platte River MW62B MW37B 5 4 3 2 1 6 5 4

Predicative Simulations Steady State Annual average conditions Pumping rate of 52 MGD per permit Transient Pumping rate changes every 2 months (41 to 75 MGD) Seasonal river flow/stage Annual average (50% exceedance) - all months except 99% exceedance for months of July August and December- January Includes spatially distributed irrigation wells

Seasonal River Flows 2002 Drought Conditions Photos from Ashland, NE Normal Flow Drought < 1,000 cfs July to August

Impact of Irrigation Pseudo Steady State Monitoring Well 06-18 August 2006 to August 2007 Hydrograph 1090.00 1089.00 1088.00 1087.00 1086.00 1085.00 1084.00 1083.00 1082.00 1081.00 Water Level Elevation (ft msl) 1080.00 Irrigation Impact 1079.00 1078.00 8/1/2006 9/1/2006 10/2/2006 11/2/2006 12/3/2006 1/3/2007 2/3/2007 3/6/2007 4/6/2007 5/7/2007 6/7/2007 7/8/2007 8/8/2007 Date

Predictive Steady State Model Predicted Drawdown Wahoo 9 10 11 12 7 8 9 10 11 12 7 8 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 Colon Sweadeburg Ithaca Leshara 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 Mead Yutan Memphis PLATTE Ashland Valley 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 RIVER Venice Wann Waterloo 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 9 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 2 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 29 28 27 2 29 28 26 25 30 26 25 30 27 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 3 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 3 2 1 6 5 4 3 Steady State Conditions Drawdown Contour (feet) Platte West Former Nebraska Ordnance Plant (Superfund Site) Ashland Well Field (City of Lincoln)

Predictive - Transient 29 28 27 26 25 29 28 27 Cedar Bluff 32 33 34 35 36 32 33 34 5 4 3 2 1 6 5 4 3 2 1 Wahoo Colon Sweadeburg Ithaca Mead Mercer Leshara Memphis Yutan Ashland Valley Venice Wann Elk City Waterloo 29 28 27 26 29 28 26 25 30 26 25 30 27 32 33 34 35 36 31 35 36 31 6 Platte River 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 25 30 29 28 27 26 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 35 36 31 32 33 34 3 32 5 4 3 2 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 35 36 1 31 6 Platte River 32 33 5 4 3 2 Transient Irrigation Wells 550 wells 150 mgd Irrigators typically consist of center pivot systems (1,000 gpm plus)

Comparison of Transient vs. Steady State Drawdown (feet) Red Steady State Green Transient Transient Cone Larger Lower river flows Concentrated irrigation pumping

Identify Source of Water to Wells Summary: 71% - Direct Depletion 84 % - Direct or Indirect Depletion

Reverse Particle Tracking 34 35 36 31 32 33 34 35 Waterloo 3 2 1 6 5 4 3 2 1 6 5 4 3 2 10 11 12 7 8 9 10 11 12 7 8 9 10 11 15 14 13 18 17 16 15 14 13 18 17 16 15 14 22 23 24 19 20 21 22 23 24 19 20 21 22 23 27 26 25 30 29 28 27 26 25 30 29 28 27 26 Mead Yutan Venice 34 35 36 31 32 33 34 35 36 31 32 33 34 35 3 2 1 6 5 4 3 2 1 6 5 4 3 2 10 11 12 7 8 9 10 11 12 7 8 9 10 11 15 14 13 18 17 16 15 14 13 18 17 16 15 14 Particles Tracked Backwards 20 yrs Identifies Source Water to Wells 22 23 24 19 20 21 22 23 24 19 20 21 22 23 Wann 8 27 26 25 30 29 28 27 26 25 30 29 28 27 26 3 34 35 36 31 32 33 34 35 36 31 32 33 34 35 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 9 10 11 12 7 8 9 10 11 12 7 8 9 10 11 Memphis 16 15 14 13 18 17 16 15 14 13 18 17 16 15 14 21 22 23 24 19 20 21 22 23 24 19 20 21 22 23 30 29 28 27 26 25 30 29 28 27 26

Impact on Superfund Site 19 20 21 Yutan 30 29 28 27 26 25 30 29 28 Venice 31 32 33 34 35 36 31 32 33 6 5 4 3 2 1 6 5 4 7 8 9 10 11 12 7 8 9 18 17 16 15 14 13 18 17 16 19 20 21 22 23 24 19 20 21 5 30 29 28 27 26 25 30 29 28 Wann 6 31 32 33 34 35 36 31 32 33 1 6 5 4 3 2 1 6 5 4 Procedure: Particles start outside of known contaminant extents Particles tracked under no Platte West pumping conditions Particles are tracked with Platte West pumping at 52 mgd Particle travel path is measured Result is predicted movement under Protective model scenario 9 10 11 12 7 8 9

Model Review Detailed Review Provided by Several Agencies: USACE Omaha District Kansas City District HTRW Center of Expertise EPA Region 7 Center for Subsurface Modeling Support (CSMoS) Nebraska Department of Environmental Quality (NDEQ) Lower Plate North Natural Resource District (LPNNRD) Public Comments

Model Uses Develop hydraulic and chemical monitoring programs Develop hydraulic monitoring well priority structure Develop predicted operational water level range for 17 hydraulic monitoring wells Hydraulic wells equipped with transducers

Hydraulic Monitoring Network Priority One Wells Priority Two Wells Priority Three Wells

Example Monitoring Well Operational Range (Priority One Well)

Future Work Model Post Audit Evaluate accuracy of model predictions Compare to real world data Annual 404 Permit Report Simulate previous 6 months pumping perform Post Audit Predict impact of next 6 months pumping Hydraulic and Chemical Monitoring Field Test to Estimate Conductance Better quantify connection with Platte River

Conclusions MODEL REPRODUCES KNOWN REAL WORLD CONDITIONS Platte West Well Field Obtains Approximately 85% of Flow from Depletion (Direct or Indirect) of Platte River Well Field Reaches Steady State Approximately 1.5 Years Steady State Simulations are a Reasonable Approximation of Transient Simulations Platte West operations will not impact Superfund Containment/City of Lincoln System Protective Modeling Approach Help develop monitoring programs Planned model updates should improve predictive capabilities

THANK YOU ARE THERE ANY QUESTIONS?