Long Island Subglacial Drainage Patterns Reveal the Direction of Glacial Flow

Similar documents
Direction of the ice flow through Long Island during maximum extension of Laurentide Ice Sheet. Waldemar Pacholik

NEW OBSERVATIONS ON THE GLACIAL GEOMORPHOLOGY OF LONG ISLAND FROM A DIGITAL ELEVATION MODEL (DEM) Bennington, J Bret,

Glacial Origins and Features of Long Island

GLACIATION. The Last Ice Age (see Chapter 12) and. Pleistocene Ice Cap. Glacial Dynamics 10/2/2012. Laurentide Ice Sheet over NYS

traverse from the outwash plain terminal moraine and recessional (Sag Harbor, Greenport and Southold

The Physical Geography of Long Island

2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier?

glacier Little Ice Age continental glacier valley glacier ice cap glaciation firn glacial ice plastic flow basal slip Chapter 14

PHYSICAL GEOGRAPHY GEOGRAPHY EARTH SYSTEMS COASTAL SYSTEMS FLUVIAL SYSTEMS

glacial drift: all deposits associated with glaciation; covers 8% of Earth s surface above sealevel, and 25% of North America

ENVI2030L - ALPINE AND CONTINENTAL GLACIATION

Glacial Geomorphology Exercise

Gifts of the Glaciers

Lidar Imagery Reveals Maine's Land Surface in Unprecedented Detail

LAB P - GLACIAL PROCESSES AND LANDSCAPES

47I THE LAS ANIMAS GLACIER.

1 Glacial Erosion and

Shaping of North America. Physical Geography II of the United States and Canada. The Last Ice Age. The Ice Age. Pleistocene Polar Ice Cap 2/14/2013

Glaciers Earth 9th Edition Chapter 18 Mass wasting: summary in haiku form Glaciers Glaciers Glaciers Glaciers Formation of glacial ice

READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean

Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College

Identification and Classification of Kettle Chains Using 2 meter Digital Elevation Model of Long Island! -Sean Tvelia-!

READING QUESTIONS: Glaciers GEOL /WI 60 pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean

1.4 Understand how moving ice acts as an agent of erosion and deposition. (Chap. 2)

Chapter 16 Glaciers and Glaciations

Glaciers. Valley or Alpine glaciers. Ice sheets. Piedmont - foot of the mountain glaciers. Form in mountainous areas Move downslope in valleys

c. 1 inch = 0.6 miles e. 1:100,000 f. 1:250,000 f. 1 inch = 4.0 miles

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S SEARCHING GLACIAL FEATURES

Geomorphology. Glacial Flow and Reconstruction

Barbara Borowiecki University of Wisconsin - Milwaukee

Recrystallization of snow to form LARGE. called FIRN: like packed snowballs. the weight of overlying firn and snow.

Geologic Trips, Sierra Nevada

Glaciers. Glacier Dynamics. Glacier Dynamics. Glaciers and Glaciation. Types of Glaciers. Chapter 15

Teacher s Guide For. Glaciers

12: MELTWATER LANDFORM IDENTIFICATION

Chapter 14. Glaciers and Glaciation

A TOPOGRAPHIC FEATURE OF THE HANGING VALLEYS OF THE YOSEMITE.

Please make sure that all teachers and chaperones attending the field study are aware of the following information:

Alpine Glacial Features along the Chimney Pond Trail, Baxter State Park, Maine

Dynamic Planet: Glaciers

Glaciers. Reading Practice

Glaciers. Chapter 17

Glaciers and Glaciation

Glaciers. Clicker Question. Glaciers and Glaciation. How familiar are you with glaciers? West Greenland. Types of Glaciers.

Glaciers. Glacier Dynamics. Glaciers and Glaciation. East Greenland. Types of Glaciers. Chapter 16

raft iiii mi.{.i.v mul\ illliiilli 1 : IB I RbBsJKHR Hfffl attwit ttinli

HYDROLOGY OF GLACIAL LAKES, FORT SISSETON AREA

The Northeast: America's Gateway to the World

MIDDLE SCHOOL CURRICULUM TR AILING ICE AGE M YST ERI E S ICE AGE TREKKING

GY 301: Geomorphology Lab 9: Alpine Glaciers and Geomorphology

Dynamic Planet C Test

Alaskan landscape evolution and glacier change in response to changing climate

The Potentially Dangerous Glacial Lakes

THE INFLUENCE OF DEBRIS ON THE FLOW OF GLACIERS.

Geoscape Toronto The Oak Ridges Moraine Activity 2 - Page 1 of 10 Information Bulletin

I. Types of Glaciers 11/22/2011. I. Types of Glaciers. Glaciers and Glaciation. Chapter 11 Temp. B. Types of glaciers

A trip to Steindalen. - geology and landscape on the way to the glacier. Geoffrey D. Corner

NYS Invitational Science Olympiad April 2005 DYNAMIC PLANET: GLACIERS

Long term Forecast of Glaciation and Evaluation of Glacial Resources of the Central Asia with the Use of Isotopic Methods

THE DEPARTMENT OF HIGHER EDUCATION UNIVERSITY OF COMPUTER STUDIES FIFTH YEAR

How Glaciers Change the World By ReadWorks

Q: What is a period of time whereby the average global temperature has decreased? Q: What is a glacier?

Great Science Adventures

GLACIER STUDIES OF THE McCALL GLACIER, ALASKA

Red Tarn, Lake District They are all features of glacial erosion

THE GLACIATION OF THE UINTA MOUNTAINS'

Shrubs and alpine meadows represent the only vegetation cover.

THE REGION LAKE SUPERIOR THE GITCHI-GAMI TRAIL & THE NORTH SHORE

Level IV Ecoregions of the Northeast Glacial Lakes Watershed Project Area

Wheatlands House, Fleet Hill, Finchampstead, Berkshire

Mapping the Snout. Subjects. Skills. Materials

Region 1 Piney Woods

Name Team Number. 1. The famous question: What percent of Earth's surface is covered by glaciers? A) 5% D) neve

The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science.

GEOMORPHOLOGY EXAM #3

GLACATIONS OF THE DAVAATIIN REGION OF THE HANGAY NURUU, CENTRAL MONGOLIA

Glaciers Earth Chapter 18 Chapter 18 Glaciers & Glaciation Glaciers: A Part of Two Basic Cycles Glaciers: A Part of Two Basic Cycles Valley Glacier

Comparison Pictures of Receding Glaciers

Morphology of Drumlins: A Comparative Analysis of Selected Drumlin Fields in North America

LITTLE LOST MAN CREEK (LLM) (formerly USGS Gaging Station No )

P1.4 THE INFLUENCE OF METEOROLOGICAL AND GEOLOGICAL PROCESSES ON THE FORMATION, DEVELOPMENT AND CHARACTERISTICS OF MONTANE LAKES

Glaciology. Water. Glacier. Moraine. Types of glacier-dammed lakes. Mechanics of jökulhlaup

Jan Lake Representative Area -- Concept Management Plan --

Did It. naturalists. Young. Moving and melting ice shaped many of Minnesota s land features. 30 Minnesota Conservation Volunteer

Tidewater Glaciers: McCarthy 2018 Notes

GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN. By Syed Naseem Abbas Gilany

GC 225 Lecture Exam #2

CHAPTER. ICE-MARGINAL TERRESTRIAL LANDSYSTEMS: SOUTHERN LAURENTIDE ICE SHEET MARGIN Patrick M. Colgan, David M. Mickelson and Paul M.

Lab: Baby Glaciers. Continue as necessary

We are pleased to present Stattelman Trust - Todd County ± Acres Bertha Township, Todd County

BRONZE AGE FIELD SYSTEM AT SOUTHAMPTON AIRPORT

Road Scholar Gopher Science Olympiad Invitational January 6, Team #: Team Name: Names: Score:

Trail Assessment Report

Blocking Sea Intrusion in Brackish Karstic Springs

Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: n zne:

2.1 Physical and Biological Description Matabitchuan River Watershed

1.1.1 Landscape character This is the upper part of a bowl-shaped landform, extending east from the Rothiemurchus character area, contained by the

Introduction to Topographic Maps

Section 2 North Slope Ecoregions and Climate Scenarios

ROCK GLACIERS IN ALASKA'

Transcription:

Long Island Subglacial Drainage Patterns Reveal the Direction of Glacial Flow Waldemar Pacholik Introduction: The debate regarding the chronology of the development of Long Island s (LI s) topography is now over a century old (see summary and references in Sanders and Merguerian, 1998 or introduction in Bennington, 2003). The discussion is still not conclusive. In 1914 Fuller proposed two advances of the Wisconsin glacier. After decades of working on this topic, Sirkin, 1996 concluded that LI topography is a product of a single advance and retreat. This concept was quickly contradicted by Sanders and Merquerian, 1998. In their interpretation, there were two separate advances, and they furthermore suggested the location of a terminal moraine south of LI. This point of view is also shared by Bennington, 2003. The consensus that all researchers share is that beside the Harbor Hill moraine west (W) from Huntington all the LI moraines have a recessional character. Unfortunately, this fact cannot be used as a decisive argument because the recessional or transgressional character of the moraine depends mostly on the mass balance of the glacial edge. Pacholik, 2014 suggested that if the Long Island Sound moraines were taken into consideration, then the positions of the LI moraines fit into a transgressional pattern of the Connecticut Lobe (CL), which is found all the way up north to the Canadian border. In that study, the Harbor Hill Moraine, W of Huntington, is a result of the push of the Hudson Lobe (HL) on the weaker stream of the CL. In this concept, a higher discharge through HL caused the formation of the Harbor Hill Moraine W of Huntington, and Long Island s moraine pattern could be explained by a single advance. The understanding of the ice flow pattern inside the Laurenitide Ice Sheet in the region of study can shine some light on the morphological development of LI topography. For these reasons, valleys of subglacial drainage were used to establish the directions of ice flow and the sequence of chronological order of the formation of LI features. The subglacial origin of LI drainage valleys was inferred from their alignment with glacial till, therefore in this study, LI valleys are classified as tunnel valleys. The earlier studies proposed that the valleys south of the Ronkonkoma Moraine are post-glacial formations developed on the permafrost (Das, 2007).

The principle of cross cutting was used to establish glacial events in chronological order. The assumption that the main stream of secondary valleys, which carried water straight to the glacial terminus, were formed from the same distance to the edge of the glacier was used to map the glacial terminus south of LI. This study also provides an explanation for the steeper slopes of the western banks of the South Shore valleys. Long Island s Drainage Patterns The alignment of Long Island s drainage valleys by glacial till points to the subglacial origin of these morphological features. Because of their tunnel valley nature, these valleys carry a potential to reconstruct the direction of the ice movement at the terminus of the Laurentide glacier. On LI, there are three different drainage systems which developed in different phases of glacial history (Figure 1): 1. The oldest, primary drainage system includes valleys which drained water from the subglacial Long Island Sound region (Fig. 1, nr. 1 valley systems). These types of valleys were extended successively with a southward transgression of the glacier. These were active through all stages of glacial transgression (Roanoke Point Moraine stage, Harbor Hill E of Huntington Moraine stage, Ronkonkoma Moraine stage and Terminal Moraine stage). Using this concept, topographic features cross cut by these valleys are successively younger as we move south. The Nissequogue and Connetquot rivers system (Fig. 1, valley nr. 1c) demonstrate an unchanged example of this type of drainage. Later, the rest of these valleys were covered, south of Harbor Hill Roanoke Point Moraine, by outwash which came out from the subglacial LI Sound basin, after LI was cleared from ice. 2. The secondary drainage system is located on the South Shore (Fig. 1, nr. 2 valley systems). These valleys have their subglacial water shades located between the primary drainage system valleys. Occasionally they formed tributaries of valleys from primary drainage systems like tributaries of the Forge River Valley in Moriches (Fig. 1, valley nr. 1f). These are the younger generation of valleys, which formed after the formation of the Ronkonkoma Moraine and during the most southern expansion of the glacier.

3. The anastomosing pattern of tunnel valleys north of Harbor Hill Moraine formed in a significant distance from the glacial edge (approximately 20 30 miles) where the water pressure distribution had more of an isotropic character. Fig. 1. Two systems of Long Island s drainage patterns, which indicate the sequence of glacial changes: primary valleys (nr. 1), which were continuously extended following a glacial transgression; secondary valleys (nr. 2), which formed during the terminal stage of the glacier; and outwash: 3a formed during the formation of the Harbor Hill moraine W of Huntington and later covered by till, 3b outwash left by the glacier retreating from LI, which covered the northern part or primary valleys. The older primary valleys are located only east of Huntington. This line of division suggests that the topographic features east of this line are older. The succession of development of LI topographical feature was established using the following: a sequence of development of subglacial valleys; the location of areas with exposed outwash; and the location of areas covered by exposed till. The chronology observed by the given outlines puts the events for the formation of the topographical features of LI in this order: 1. Formation of Harbor Hill Roanoke Point Moraine section E of Huntington - The primary valleys, which passed this line of moraines later on, were covered by outwash. In the section W of the Nissequogue River (Fig. 1, valley nr. 1c), outwash partially covered the northern sections of these valleys (Fig. 1, valleys 1a and 1b). Northern sections of primary valleys east of this river are completely covered by outwash. 2. Formation of Ronkonkoma Moraine All of the primary valleys cross cut this moraine. 3. Formation of Harbor Hill Roanoke Point Moraine W of Huntington There is coverage of the primary valleys with the outwash, possibly existing south of this moraine. Outwash fens cover northern sections of two primary valleys (Fig. 1, valleys 1a and 1b) E of the Nissequogue River (Fig. 1, valley 1c). 4. Glacial transgression S of LI There is the formation of a secondary drainage pattern on the South Shore of LI, and an anastomosing tunnel valley s system N of the Harbor Hill

Moraine. (This kind of pattern formed when water pressure conditions ware more isotropic conditions further away from the glacial terminus). 5. The fast retreat of the glacier from LI The entire Island got covered by a veneer of till, with the exception of areas south of Roanoke Point Moraine. 6. The retreating glacier stops around the Roanoke Point Moraine line. The glacial front receded NW from the point somewhere between the mouth of the Nissequogue River and Crain Neck because the mouth of the Nissequogue River was not covered by outwash, but the outwash covered the northern section of the island E of this location. (starting with the Port Jefferson Fen (Hanson, 2005) and further going E, including the LI Pine Barrens) The main streams of both the primary and secondary drainage systems generally are parallel to each other. Their orientation suggests that these valleys were positioned perpendicularly to the glacial terminus which insured the fastest way of releasing water pressure. South Shore Tunnel Valleys Striation System Fig. 2. Example of parallel drainage pattern. The South Shore drainage system (Fig. 1, nr. 2 drainage system) has a predominantly parallel pattern (Fig. 3, 4). The existence in this region of this type of drainage formation is out of place because the parallel drainage system usually forms on steep uniformly sloping surfaces, or in regions of an outcropping of resistant parallel rock bands, or in an area with a parallel fault system. But these geological predispositions for this kind of formation do not exist on LI. To produce this kind of pattern, the direction of the moving ice had to follow along the elongation of the parallel valleys. Most likely, the ice forced the water to flow in the same direction as its own. For that reason, the parallel valleys should be interpreted as striation valleys (Fig. 3, 4, and 5).

Fig. 3. Drainage pattern of the South Shore of Long Island. Eastern tributaries of the main streams (vent valleys) have parallel drainage patterns, while western side tributaries of these streams have dendritic patterns. The parallel striation valleys exist as tributaries of the eastern side of the main valleys. The main valleys carried water southward out of the glacier, following a decreasing pressure gradient. Because of their decompressing function, the term vent valley was used. The tributaries of the western sides of the vent valleys formed dendritic rather than parallel patterns. This kind of pattern formed most likely because the direction of the water flow on the western side of the vent valleys did not agree with direction of the moving ice (Fig. 3, 4 and 5).

Fig. 4 Schematic illustration which explains the parallel drainage pattern formation on the eastern side of the vent valleys and the dendritic pattern on their western side. When striation valleys are plotted on the LI map, they show the direction of the glacial ice motion through the South Shore of LI (Fig. 5). Fig. 5. Digital elevation map of Long Island with black lines indicating striation valleys. The striation valleys show the direction of ice flow through the South Shore of LI. Vent Valleys and the Estimated Location of the Glacial Terminus of the Laurentide glacier The South Shore of LI has a uniform geological makeup (sand and gravel). Taking this into consideration, the assumption can be made that vent valleys should form at approximately the same distance from the glacial terminus. The average extension of vent valleys can be measured by calculating the length of vent valleys down to Jamaica Bay, the only location on LI which was free of ice during the last glaciation (Pacholik, 2014). Because the average length of vent valleys was estimated to be 11 miles, the extension of vent valleys 11 miles down into the Great South Bay and the Ocean should yield the approximated location of the glacial terminus (Fig. 6). Southwest of Long Beach the location of the glacial terminus was established on the basis of the presence of coarse ocean floor sediments (Pacholik, 2014).

Fig. 6. Approximated position of the terminal moraine from the Laurentide Ice Sheet (black line) estimated on a basis of extended vent valleys (red lines), and SW from Long Beach on the basis of coarse ocean sediment. The map also indicates the striation valleys which show the direction of ice flow through the LI South Shore. Overlay maps: DEM map of Long Island, NY, and the map of ocean sediments SW from Long Beach from Seafloor Characterization Offshore of the New York-New Jersey Metropolitan Area using Sidescan-Sonar, USGS. Steeper Western Slopes of Vent Valleys Generally, the western side of vent valleys have a steeper slope than their eastern side. This topographical pattern was described by Fuller, 1914. This geomorphology can be explained by the subglacial erosional and depositional system of ice and water. The drift coming diagonally toward the vent valleys (direction of striation valleys) was getting partially eroded by the stream of water in the vent valley. This action caused the eastern side to be less elevated and gently sloped. On the other hand, the western sides of the valleys were bulldozed by ice, which created a steeper slope (Fig. 7).

Fig. 7. Schematic illustration of the formation of the steeper western slope of the vent valleys as an effect of the simultaneous action of diagonal bulldozing by ice and the removal of glacial drift on the eastern side of the valley by the stream of water. Conclusion: 1. The subglacial drainage patterns on LI provide evidence for the sequence of the chronological development of the island s topography. 2. The meltdown of ice on LI occurred at a fast rate. 3. The parallel valleys (striation valleys) of LI can be used to indicate the directions of ice flow through the South Shore of LI. 4. The position of the terminal moraine on LI can be estimated on the basis of the average length of the vent valleys. 5. The steeper western slopes of the vent valleys are the result of a sideways glacial push, while the gentler slopes of the eastern sides are the result of the removal of glacial drift by the water current of the vent valleys.

References Bennington, J.B., 2003, New observations on the glacial geomorphology of Long Island from a digital elevation model DEM., 10th Conference - Geology of Long Island and Metropolitan New York, vol. 10, URL http://pbisotopes.ess.sunysb.edu.lig/conferences/abstracts/bennington/ Das, S., Origin and Evolution of Dry Valleys South of Ronkonkoma Moraine, 2007, http://pbisotopes.ess.sunysb.edu/reports/soma-sen-thesis.pdf Fuller, M.L., 1914, The Geology of Long Island, New York, USG, Professional Paper 82 Hanson, G.N., 2005, Glacial Geology of the Stony Brook-Setauket-Port Jefferson Area, Report., Stony Brook University, http://pbisotopes.ess.sunysb.edu/reports/dem_2/references.htm King C., Mion L., Pacholik W., Hanson G, H., Evidence of Till South of Ronkonkoma Moraine, 2003, 10th Conference - Geology of Long Island and Metropolitan New York, URL http://dspace.sunyconnect.suny.edu/bitstream/handle/1951/48074/kingindex.pdf?sequence= 1 Pacholik W., Direction of the ice flow through Long Island during maximum extension of Laurentide Ice Sheet, 2014, 21st Conference - Geology of Long Island and Metropolitan New York, URL http://www.geo.sunysb.edu/lig/conferences/abstracts14/pacholik-edited.pdf Pacholik W., Formation of Long Island's North Shore Coastline, 2013, 20th Conference - Geology of Long Island and Metropolitan New York, URL http://www.geo.sunysb.edu/lig/conferences/abstracts13/4-13-program.htm Sanders, J.E., and Merguerian, C. M., Evidence for pre-woodfordian ages of Long Island's terminal moraines, 1995, 2 nd Conference - Geology of Long Island and Metropolitan New York, URL https://dspace.sunyconnect.suny.edu/bitstream/handle/1951/48207/sander00-95.pdf?sequence=1&isallowed=y Sirkin, L., 1996, Western Long Island Geology: History, Processes & Field Trips, Book & Tackle Shop. Schmitt, K., 2006, More Evidence of Till South of the Ronkonkoma Moraine, 13th Conference - Geology of Long Island and Metropolitan New York, URL http://pbisotopes.ess.sunysb.edu.lig/conferences/abstracts/ Schwab, W.C., Denny, J.F., Butman, B., Danforth, W.W.,Foster, D.S., Swift, B.A., Lotto, L.L., Allison, M.A., Thieler, E.R., Hill, J.C., 2000, Seafloor Characterization Offshore of the NewYork- New Jersey Metropolitan Area using Sidescan-Sonar, USGS, http://pubs.usgs.gov/of/2000/of00-295/default.htm