SEG Houston 2009 International Exposition and Annual Meeting

Similar documents
A RECURSION EVENT-DRIVEN MODEL TO SOLVE THE SINGLE AIRPORT GROUND-HOLDING PROBLEM

ECLIPSE USER MANUAL AMXMAN REV 2. AUTOMETRIX, INC. PH: FX:

Predicting flight routes with a Deep Neural Network in the operational Air Traffic Flow and Capacity Management system

Towards Systematic Air Traffic Management in a Regular Lattice

Appendix B Ultimate Airport Capacity and Delay Simulation Modeling Analysis

Motion 2. 1 Purpose. 2 Theory

A Statistical Method for Eliminating False Counts Due to Debris, Using Automated Visual Inspection for Probe Marks

Clustering radar tracks to evaluate efficiency indicators Roland Winkler Annette Temme, Christoph Bösel, Rudolf Kruse

A Study on Berth Maneuvering Using Ship Handling Simulator

2012 Performance Framework AFI

Phytclean Guide: How to apply for phytosanitary (special) markets

AUGUST 2017 GNSS REVIEW. Survey Economics Chances of success. Mobile Mapping Airport scanning. Stag s Leap Winery Pre-construction plan

Comparison Study between Vault Seismometers and a New Posthole Seismometer

INNOVATIVE TECHNIQUES USED IN TRAFFIC IMPACT ASSESSMENTS OF DEVELOPMENTS IN CONGESTED NETWORKS

1. Introduction. 2.2 Surface Movement Radar Data. 2.3 Determining Spot from Radar Data. 2. Data Sources and Processing. 2.1 SMAP and ODAP Data

Reducing Garbage-In for Discrete Choice Model Estimation

RISING PERFORMANCE. Civil aviation is an outlier. It s BY ERIK DAHLBERG

NATIONAL AIRSPACE POLICY OF NEW ZEALAND

E: W: avinet.com.au. Air Maestro Training Guide Flight Records Module Page 1

Analysis of en-route vertical flight efficiency

ScienceDirect. Prediction of Commercial Aircraft Price using the COC & Aircraft Design Factors

Simulation Analysis on Navigation Indexes of Wanzhou Yangtze River Highway Bridge after the Anti-Collision Device Construction by Ship Model Test

DRY- DOCK HULL INSPECTION OF NILE CRUISERS

Challenges in Complex Procedure Design Validation

UC Berkeley Working Papers

GEOGRAPHY OF GLACIERS 2

TWELFTH AIR NAVIGATION CONFERENCE

DETECTING CRACKS UNDER BUSHINGS WITH ROTATIONAL REMOTE-FIELD EDDY CURRENT PROBES

Certification Specifications and Acceptable Means of Compliance for Aircraft Noise CS-36

Enter here your Presentation Title 1

A Review of Airport Runway Scheduling

ANALYSIS OF THE CONTRIUBTION OF FLIGHTPLAN ROUTE SELECTION ON ENROUTE DELAYS USING RAMS

Follow up to the implementation of safety and air navigation regional priorities XMAN: A CONCEPT TAKING ADVANTAGE OF ATFCM CROSS-BORDER EXCHANGES

Thinking With Mathematical Models Invs. 4.3, Correlation Coefficients & Outliers. HW ACE #4 (6-9) starts on page 96

NextGen AeroSciences, LLC Seattle, Washington Williamsburg, Virginia Palo Alto, Santa Cruz, California

105 SKY KING TAXI-WAY - SPICEWOOD, TEXAS

Tool: Overbooking Ratio Step by Step

American Airlines Next Top Model

Ensemble methods for ice sheet init.

Have Descents Really Become More Efficient? Presented by: Dan Howell and Rob Dean Date: 6/29/2017

4. Serrated Trailing Edge Blade Designs and Tunnel Configuration

Surveillance and Broadcast Services

HEAD-UP DISPLAY (HUD), EQUIVALENT DISPLAYS AND VISION SYSTEMS

Note that the steepest 8 direction pour point model slope in direction 64 is: 10.0

Report from Marcel Meier Dog-handler sub-commission regarding the dog-handler gathering that be held by Marcel last winter.

The SESAR Airport Concept

Development of Flight Inefficiency Metrics for Environmental Performance Assessment of ATM

ACADEMIC ADVENTURES SCIENCE AND MATHEMATICS MIDDLE SCHOOL / HIGH SCHOOL

Canberra Airport Aircraft Noise Information Report

Using The Approach Planner

Decision aid methodologies in transportation

Serengeti Fire Project

Analysis of vertical flight efficiency during climb and descent

NETWORK MANAGER - SISG SAFETY STUDY

HEATHROW COMMUNITY NOISE FORUM. Sunninghill flight path analysis report February 2016

2017/ Q1 Performance Measures Report

Clinical results using the Holladay 2 intraocular lens power formula

Towards New Metrics Assessing Air Traffic Network Interactions

Clam Framework Map Book NEFMC Habitat Advisory Panel Meeting, April 3, 2018

HEATHROW COMMUNITY NOISE FORUM

Today: using MATLAB to model LTI systems

TWENTY-SECOND MEETING OF THE ASIA/PACIFIC AIR NAVIGATION PLANNING AND IMPLEMENTATION REGIONAL GROUP (APANPIRG/22)

J. Oerlemans - SIMPLE GLACIER MODELS

FACILITATION (FAL) DIVISION TWELFTH SESSION. Cairo, Egypt, 22 March to 2 April 2004

Agenda: SASP SAC Meeting 3

Effect of Support Conditions on Static Behavior of 1400m main span and 700m side span Cable-stayed Bridge

Defining and Managing capacities Brian Flynn, EUROCONTROL

DMAN-SMAN-AMAN Optimisation at Milano Linate Airport

University of Colorado, Colorado Springs Mechanical & Aerospace Engineering Department. MAE 4415/5415 Project #1 Glider Design. Due: March 11, 2008

Advisory Circular. 1.1 Purpose Applicability Description of Changes... 2

Efficiency and Automation

ARRIVAL CHARACTERISTICS OF PASSENGERS INTENDING TO USE PUBLIC TRANSPORT

7-Nov-15 PHYS Elastic Collision. To study the laws of conservation of momentum and energy in an elastic collision. Glider 1, masss m 1.

The Third ATS Coordination Meeting of Bay of Bengal, Arabian Sea and Indian Ocean (BOBASIO) Region Hyderabad, India, 22 nd to 24 th October 2013.

VISUALIZATION OF AIRSPACE COMPLEXITY BASED ON AIR TRAFFIC CONTROL DIFFICULTY

The Effects of GPS and Moving Map Displays on Pilot Navigational Awareness While Flying Under VFR

System Oriented Runway Management: A Research Update

Canberra Airport Aircraft Noise Information Report

Assessment of the 3D-separation of Air Traffic Flows

Including Linear Holding in Air Traffic Flow Management for Flexible Delay Handling

CHAPTER 4: PERFORMANCE

Construction of Conflict Free Routes for Aircraft in Case of Free Routing with Genetic Algorithms.

RNP AR and Air Traffic Management

Flying for Free Exploiting the weather with unpowered aircraft. Martin Ling

INCREASING AIRPORT OPERATION SAFETY BASED ON UPDATED OR ENHANCED AIRPORT PAVEMENT MARKINGS: A CASE STUDY PAPER

Problem Set 3 Environmental Valuation

Ground Deformation Monitoring at Natural Gas Production Sites using Interferometric SAR

Flight Dynamics Analysis of a Medium Range Box Wing Aircraft

Ground movement safety systems and procedures - an overview

APPENDIX H 2022 BASELINE NOISE EXPOSURE CONTOUR

Passenger Building Design Prof. Richard de Neufville

Consideration will be given to other methods of compliance which may be presented to the Authority.

FACILITATION PANEL (FALP)

USE OF RADAR IN THE APPROACH CONTROL SERVICE

TECHNICAL REPORT. Title: NIRCam Point Source SNR vs. Filter, Source Brightness and Readout Combinations

Efficiency and Environment KPAs

ENHANCEMENT OF THE FAA s ON-LINE WILDLIFE AIRCRAFT STRIKE DATABASE WITH AN INTERACTIVE GRAPHICS CAPABILITY

Workshop. SESAR 2020 Concept. A Brief View of the Business Trajectory

Solar Power Shade INSTRUCTION MANUAL

Performance Based Navigation Literature Review

Transcription:

Constrained propeller ship noise removal and its application to OC data Manhong Guo*, Jun Cai, Jim Specht, in Wang TGS-Nopec Geophysical Company, 500 CityWest lvd. Suite 000, Houston, TX 7704, US Summary constrained propeller ship noise removal technique for OC data has been developed. The constraints include the ship lane information, global linear fitting to determine the ship movement, and the calculation of relative ship locations from different shots. The following field data examples from TGS Cameron SaD Survey demonstrate the effectiveness of the method. Introduction 50mx50m. For each grid cell a time trajectory is calculated from the cell center to each of the receivers on the OC cables. semblance is then calculated following the trajectory for all the cables (in this case, it is two cables). We also perturbed the scan velocity Vscan from water velocity to get better focusing. Figure 1 shows the semblance within the shipping lane for one shot and two cables. The bull s eye corresponds to the ship location. In Figure 1, the travel time trajectory (the green curves) are superimpose on the seismic data. Propeller ship noise can be a serious issue when acquiring seismic data near a commercial shipping lane. It is practically impossible to stop the ships from passing through while acquiring the seismic data. t deep reflection times the propeller ship noise can be stronger than the reflective signal. For this kind of survey environment it is important to suppress the propeller noise while preserving the signal. Manin and onnot (1993) proposed the solution which flattened the noise with a static shift by knowing the coordinate of the noise source and travel times and suppressed the noise with existing multi-channel filtering tools. Gulunay et al (005) proposed to use semblance to automatically locate the static scattering noise source such as shallow sea bed obstructions. rittan et al (008) showed another good example by using a similar approach. The Method and Field Data Examples For OC data, the travel time of the ship propeller noise traveling from the ship to the seismic receiver is T = ( x x) + ( y y) + S V S scan where T is the total travel time from ship to the OC receiver, (Sx, Sy) is ship location coordinates, (x, y, z) is the OC receiver location coordinates. Vscan is the scanned focusing velocity. Consider the case in which two OC cables are located near the shipping lane and recording the ship propeller noise. In order to determine the location of the ships we first need to decide where to search. Since we know the ships are traveling within the shipping lane we can limit the search for the ships within the shipping lane. We divide the shipping lane into a grid of cells each with dimensions of z Figure 1: () Constrained semblance scanned within the shipping lane for one shot. The bull s eye corresponds to the ship location. () Seismic data for two OC cables and the predicted ship noise trajectories corresponding to the bull s eye in the semblance scan. The semblance procedure stated above is repeated for all of the shots within a single sail line pass referred to as a sequence. Figure shows the predicted ship locations for one sequence of OC data. The anomalous pattern of crossing ship locations within the circled area is caused by SEG Houston 009 International Exposition and nnual Meeting 3307

Constrained propeller ship noise removal and its application to OC data the mirror effects of the scan. The mirror effect is defined as if we treat the recording cable as a mirror. This will result in two grid cells that will produce the same trajectory for all the receivers on the cable. This is demonstrated in the semblance scan (Figure ). In Figure, the two semblance bull s eyes have the same trajectory but only one of them is the true ship location. Figure also contains numerous low quality picks from the simple automatic scanning method indicating additional information is needed to further improve the quality of the ship location picks. This time we also limit the deviation of each ship location from the fitted line and fine tune the ship location around the fitting line. The final result is shown in Figure 3. We can repeat the same procedures for more than one shipping lane at the same time. Figure 4 shows the results of the raw ship location picks for two shipping lanes derived from numerous sequences recorded over a large time span. We can see the cable layout is different. There are more low quality picks for this layout. Figure 4 is the final results after we repeat the constraining procedures listed above. dy dx Figure : () Scanned ship locations for one sequence. () One ship position can have two mirror locations (bull s eyes) in the scanned semblance plot. In order to improve the quality of the picks, we assume within the seismic recording time, the ship approximately moved along a line and used linear fitting. The slope of the line is constrained by the slope difference between the fitting line and the shipping lane. The ship location difference is then calculated along the x and y axis between the adjacent shot point numbers, shown in Figure 3. From Figure 3, we can see the ship is moving in an approximate direction from bottom right to top left. We delete the outliers and the linear fitting is performed again. Figure 3: () The ship location difference plot. This shows the ship is moving from bottom right to top left. () The final constrained ship locations for one sequence of data into two recording cables. Since the ships are moving while each shot is being recorded we calculate a ship position for both shallow and deep seismic recording times respectively and calculate a time variant static shift function. This is applied to each time window respectively before removing the noise. Once the accurate ship locations are calculated for the time windows within each shot record the ship propeller noise is SEG Houston 009 International Exposition and nnual Meeting 3308

Constrained propeller ship noise removal and its application to OC data flattened in time using a static shift based on the predicted noise trajectory. Conventional multi-channel processing is then applied to reject the flatted events. Figure 5 shows one shot gather before and after ship propeller noise removal and the difference. More than one ship noise is present on this shot record. The propeller noise is significantly suppressed while the primary reflections are preserved. Figure 6 shows a stack section before and after ship propeller noise removal and the difference. gain we can see the primary events are well preserved while the ship propeller noises are suppressed. Conclusion We have presented a constrained ship propeller noise removal technique using real data examples. The method is fully automated. The constraints we uses include The shipping lane information to reduce the number of unknowns and improve the picks quality and efficiency. global linear fitting method to eliminate the mirror picks and low quality outliers The ship location relationship between shot records to determine the ship movement direction and in turn further improve the linear fitting quality. The field data results show the effectiveness of the method. cknowledgments uthors like to thank their colleagues Simon aldock, Greg barr, ecky Miller, and rad eck for their valuable contributions during the project. nd thank to TGS-Nopec for their support and release the material for publication. Figure 4: Ship location determined by numerous sequences and two cables. () aw ship locations from semblance picks. () Constrained ship locations. SEG Houston 009 International Exposition and nnual Meeting 3309

Constrained propeller ship noise removal and its application to OC data C C Figure 5: One shot gather before () and after () propeller ship noise removal. (C) The difference. Figure 6: Stack section before () and after () propeller ship noise removal. C) The difference. SEG Houston 009 International Exposition and nnual Meeting 3310

EDITED EFEENCES Note: This reference list is a copy-edited version of the reference list submitted by the author. eference lists for the 009 SEG Technical Program Expanded bstracts have been copy edited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web. EFEENCES rittan, J., L. Pidsley, D. Cavalin,. yder, and G. Turner, 008, Optimizing the removal of seismic interference noise: The Leading Edge, 7, 166 175. Gulunay, N., M. Magesan, and J. Connor, 005, Diffracted noise attenuation in shallow water 3D marine surveys: 75th nnual International Meeting, SEG, Expanded bstracts, 138 141. Manin, M., and J. N. onnot, 1993, Industrial and seismic noise remove in marine processing: 55th Conference and Exhibition, EGE. SEG Houston 009 International Exposition and nnual Meeting 3311