Runway Roughness Evaluation- Boeing Bump Methodology

Similar documents
Runway Roughness Evaluation- Boeing Bump Methodology

Runway Roughness Evaluation- Boeing Bump Methodology

Budapest, Hungary 2015

Manufacturer s Perspective- Airport Pavement Needs and Maintenance Issues

Boeing Aircraft and the Impact on Airports

FORT LAUDERDALE-HOLLYWOOD INTERNATIONAL AIRPORT ENVIRONMENTAL IMPACT STATEMENT DRAFT

Evaluation Methods for longitudinal evenness of runway pavements

Airfield Geometric Design Prof. Amedeo Odoni

Airport Design-3 Geometric Design

APPENDIX X: RUNWAY LENGTH ANALYSIS

Airfield Geometric Design Prof. Amedeo Odoni

According to FAA Advisory Circular 150/5060-5, Airport Capacity and Delay, the elements that affect airfield capacity include:

RULES OF TENNESSEE DEPARTMENT OF TRANSPORTATION AERONAUTICS DIVISION CHAPTER LICENSING AND REGISTRATION OF AIRPORTS TABLE OF CONTENTS

CATCODE ] CATCODE

NOISE ABATEMENT PROCEDURES

Advisory Circular (AC)

Boeing Airplane Overview

RNP AR APCH Approvals: An Operator s Perspective

The offers operators increased capacity while taking advantage of existing airport infrastructure. aero quarterly qtr_03 10

Airplane Performance. Introduction. Copyright 2017 Boeing. All rights reserved.

INCREASING AIRPORT OPERATION SAFETY BASED ON UPDATED OR ENHANCED AIRPORT PAVEMENT MARKINGS: A CASE STUDY PAPER

PROPOSED HORIZONTAL LAYOUT FILLET DESIGN FOR ENTRANCE/EXIT TAXIWAYS

Appendix B Ultimate Airport Capacity and Delay Simulation Modeling Analysis

Dr. Antonio A. Trani Professor of Civil Engineering Virginia Polytechnic Institute and State University. Spring 2015 Blacksburg, Virginia

Runway Length Analysis Prescott Municipal Airport

Terms of Reference for rulemaking task RMT.0704

ENHANCE RUNWAY SAFETY. (Presented by the Secretariat)

Flying Cloud Airport (FCM) Zoning Process: Informing a Mn/DOT Path Forward

Provincial Railway Technical Standards

TANZANIA CIVIL AVIATION AUTHORITY AIR NAVIGATION SERVICES INSPECTORATE. Title: CONSTRUCTION OF VISUAL AND INSTRUMENT FLIGHT PROCEDURES

Contaminated Runways. Getting it stopped perfectly with imperfect information on an imperfect surface

Landing on Slippery Runways. BOEING is a trademark of Boeing Management Company. Copyright 2007 Boeing. All rights reserved.

PCN Reporting- Current Problems and Future Research Plans

Introduction to Runway Condition Assessment Matrix (RCAM) and Field Condition Reporting

Assignment 7: Airport Geometric Design Standards

TAKEOFF SAFETY ISSUE 2-11/2001. Flight Operations Support & Line Assistance

DEPARTMENT: CIVIL ENGINEERING SEMESTER: III SUBJECT CODE / Name: CE2303/ Railway, Airport and Harbors Engineering 2 MARK QUESTIONS AND ANSWERS

Dr. Antonio A. Trani Professor of Civil Engineering Virginia Polytechnic Institute and State University. January 27, 2009 Blacksburg, Virginia

1) Rescind the MOD (must meet the standard); 2) Issue a new MOD which reaffirms the intent of the previous MOD; 3) Issue a new MOD with revisions.

7.1 General Information. 7.2 Landing Gear Footprint. 7.3 Maximum Pavement Loads. 7.4 Landing Gear Loading on Pavement

Bearing Strength Assessment PLR & PCN

ICAO Standards. Airfield Information Signs. ICAO Annex 14, 4th Edition Aerodrome Design and Operations

Challenges to Airport Ramp & Runway Debris Control

Helicopter Performance. Performance Class 1. Jim Lyons

March 2016 Safety Meeting

Aerodrome Standards and Requirements Aeroplanes at or below 5700 kg MCTOW Non Air Transport Operations

Helicopter Performance. Performance Class 2 - The Concept. Jim Lyons

II. Purpose and Need. 2.1 Background

CESSNA CITATION IIB PW JT15D-4 INTRODUCTION. Runway Analysis provides the means to determine maximum allowable takeoff and landing weights based upon:

Demand Patterns; Geometric Design of Airfield Prof. Amedeo Odoni

RSAT RUNUP ANALYSIS 1. INTRODUCTION 2. METHODOLOGY

Special Modification To Standards Process for Airplane Design Group VI. The Boeing Federal Aviation Administration

Passenger Facility Charge Application #1

Head-up Guidance & Vision Technologies Enabling Safer and More Efficient Airline Operations

Airport Compatibility Brochure 737 MAX. March 2014 PRELIMINARY

Agenda: SASP SAC Meeting 3

Braking Action Measurement

Procedures for Air Navigation Services Aerodromes (PANS-AGA) ICAO Doc. 9981

Chapter 14. Design of Flexible Airport Pavements AC 150/5320-6D

ADVISORY CIRCULAR ON CALCULATION OF DECLARED DISTANCES

GCAA ADVISORY CIRCULAR

IOP Conference Series: Materials Science and Engineering. Related content PAPER OPEN ACCESS

BELFAST MUNICIPAL AIRPORT OVERVIEW

PUBLIC NOTICE. Table 1 Projects Proposed by Amendment

Use of technology to mitigate overrun aftermath

Table of Contents. Overview Objectives Key Issues Process...1-3

APPENDIX D FEDERAL AVIATION REGULATIONS, PART 77

1. SUMMARY 2. ADDITIONAL PARTICIPATION

AIRSIDE CAPACITY AND FACILITY REQUIREMENTS

WATTS ANTENNA COMPANY

FUEL MANAGEMENT FOR COMMERCIAL TRANSPORT

Consideration will be given to other methods of compliance which may be presented to the Authority.

The following criteria shall be applied within the boundaries of the AO District:

Aerodrome Safety. H.V. SUDARSHAN International Civil Aviation Organization

7.1 General Information. 7.2 Landing Gear Footprint. 7.3 Maximum Pavement Loads. 7.4 Landing Gear Loading on Pavement

MEETING MINUTES Page 1 of 5

FACILITY REQUIREMENTS SUMMARY OF KEY ISSUES OVERVIEW

Airport Compatibility

Runway Excursion 2018 projects ALTA 2018

What's your fleet mix for design?

CESSNA SECTION 5 PERFORMANCE

Pavement Strength Analysis Prepared by Molzen Corbin September 2016

AERONAUTICAL SURVEYS & INSTRUMENT FLIGHT PROCEDURES

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Air Traffic Organization Policy

Airport/Aircraft Compatibility Challenges on the Apron

Appendix B PAVEMENT CONDITION AND HISTORY

SOUTH CAROLINA AERONAUTICS COMMISSION

Airport Compatibility Brochure 737 MAX

Preliminary Findings of Proposed Alternative

CHAPTER 1 BACKGROUND AND PROPOSED ACTION

2017 WATS Conference FAA National Simulator Program

Runway Incursions 3 Markings

Advisory Circular. 1.1 Purpose Applicability Description of Changes... 2

PUBLIC NOTICE FOR PROPOSED COLLECTION OF PASSENGER FACILITY CHARGES AT COLORADO SPRINGS AIRPORT

Special Conditions: The Boeing Company Model and Airplanes;

7.1 General Information. 7.2 Landing Gear Footprint. 7.3 Maximum Pavement Loads. 7.4 Landing Gear Loading on Pavement

> Aircraft Noise. Bankstown Airport Master Plan 2004/05 > 96

Takeoff And Landing Performance Assessment TALPA. Chris Meyer MnDOT Aeronautics

North Cruise Berth Projects PortMiami

Transcription:

FLIGHT SERVICES Runway Roughness Evaluation- Boeing Bump Methodology Michael Roginski, PE, Principal Engineer Boeing Airport Compatibility Engineering ALACPA X Seminar, Mexico City, Mexico September 3- October 4, 213 The statements contained herein are based on good faith assumptions and provided for general information purposes only. These statements do not constitute an offer, promise, warranty or guarantee of performance. Actual results may vary depending on certain events or conditions. This document should not be used or relied upon for any purpose other than that intended by Boeing. BOEING is a trademark of Boeing Management Company. Outline Types of Roughness and Boeing Bump Criteria details Profiling Equipment Comparison Case Studies done by Boeing Standardization of Roughness Criteria Conclusions 2

What Type of Roughness is Addressed by the Boeing Bump Criteria Limit Loads Single discrete, large wavelength bumps on a runway, which if severe enough, could lead to structural failure by exceeding the limit design loads of an aircraft. Currently, the Boeing Bump Criteria addresses this issue, such that bumps reaching the unacceptable level are repaired. Two other loading conditions can be addressed by more sophisticated techniques: 1) Fatigue Loads Continuous large wavelength bumps, which exceed the aircraft design fatigue criteria. This criteria is based on a change in vertical acceleration at the aircraft cg which cannot exceed a once per flight occurrence level. 2) Landing gear truck pivot joint Continuous short wavelength bumps, which are primarily only an issue in Russia and CIS countries due to poor construction methods for concrete. 3 Fatigue Life Exceedance of Airplane Load Factors 1 Takeoff Roll (Smooth runway) Exceedances per flight 1 1. Landing Rollout (Smooth runway) Takeoff Roll- (Rough runway) Aircraft fatigue life affected.1.2.4.6.8 1. Incremental vertical acceleration at CG (g units) 4

Pavement Maintenance Priorities Runway pavements should fill the following functions: 1.) Provide adequate bearing strength- addresses structure of pavement 2.) Provide good ride quality- addresses surface geometrics and runway roughness falls into this function 3.) Provide good surface friction characteristics- addresses texture and slope of pavement for adequate drainage All of these functions are tied to proper pavement maintenance ensuring the pavement is adequate for safe aircraft operations. Boeing Runway Roughness Criteria-Single Event Limit Load 2 Bump height, cm 15 1 5 Unacceptable- Closure of runway Acceptable Excessive Repairs needed Pilot complaints RUNWAY ROUGHNESS CRITERIA L L L H H H 1 2 3 4 5 Bump length, m 6 6

Long Wave Depression Bump Definition 5.1 Rod Length (1m-12m rods tested ) Centerline Bump height Shortest Bump Length 3C 5. 3N Elevation, m North 4.9 South 3S 4.82 6+22 6+25 6+28 Runway Station, m 6+34 7 Details of the Boeing Method- Long Wave Depression 4 13 cm 1 cm bump worse due to shorter bump length- all rod lengths must be checked 3 North Elevation, cm 2 1 cm 1 cm 8 cm bump worse than 1 cm bump- all points along profile for a given rod length must be checked 1 South 8 cm 6 22 1 14 18 26 Runway station, m 8

Details of the Boeing Bump Analysis Profile smoothing done prior to bump analysis to eliminate raw data roughness not necessarily affecting aircraft. Data is curve fit with smooth spline every 2 meters and correction for slope is done every 1 meters. This flattens profile to better observe roughness. Rod lengths to be checked start at 5m up to 12 m, increments of 5-1 m typically adequate. Plot of worst bumps versus the Boeing criteria indicates areas needing repair. More detailed analysis can be done by plotting 1-2m profile segments. 9 Boeing Bump Analysis- Plot of Worst Bumps 1

Profile Smoothing Comparison- Boeing vs PROFAA 25 Boeing Roughness Criteria 2 Unacceptable Excessive Bump height (cm) 15 1 Boeing FAA Acceptable 5 1 2 3 4 5 6 Bump Length (m) 11 Boeing Bump Analysis- Detail of Excessive Bumps Region with Highest Roughness 4 3 Profile H eight (cm ) 2 1-1 -2-3 Significant Bump 1 2 3 4 5 6 7 8 9 1 Runway Position (m) 12

Boeing Bump Analysis- Detail of Excessive Bumps Region with Highest Roughness 2 1 Profile Height (cm) -1-2 -3-4 -5 Significant depression -6 24 241 242 243 244 245 246 247 248 249 25 Runway Position (m) 13 Comparison Between Boeing Criteria and other Criteria 2 Bump height, cm 15 1 5 Unacceptable USAF airplane design criteria MIL-A-8862A paved airfields ICAO tolerable limits (3cm over 45m) FAA straightedge criteria (6mm over 5m) Runway vertical curve (ICAO annex 14) Excessive Acceptable 1 2 3 4 5 Bump length, m ICAO straightedge criteria (3mm over 3m) 6 14

Runway Profiling Equipment Comparison High Speed Inertial Laser profiler Manual rolling inclinometer profiler Manual rod and level device 15 Pavement Assessment Process Compare profiles from 3 profiling devices Verify that regions of roughness are similar in magnitude for all profilers Compare 2 Lines of Survey (CL and 15 Feet Left of CL) Roughness determined using Boeing Bump Criteria Initial consultant request to review runway 7/25 came to Boeing in 27. Main concern was fatigue, primarily region 1 dual bump exceeding the once per flight fatigue limit. 16

Areas of Roughness from APR survey- 26 Painted Threshold on 7 end Roughest Areas 7 25 95-25 Region 1 745-875 Region 2 17 Areas of Roughness from APR survey- 26 Region 1 Region 2 18 Image: Courtesy Google Maps

APR Profiles-Regions 1 and 2 as noted Denver Runway 7-25 (Grade Removed) Elevation (in) Elevation (in) Elevation (in) 5. 2.5. 5. 2.5. -2.5 5. 2.5. 7-25 15FT LOC 7-25 CL 7-25 15FT ROC 1 2 3 4 5 6 7 8 9 1 11 12 Distance (feet) 19 Bump Index Definition- PROFAA method 25 Unacceptable-Bump Index > 1 2 Bump Height (cm) 15 1 Acceptable-Bump Index < 1 5 Bump Index=Actual Bump Height/Height corresponding to Acceptable curve 1 2 3 4 5 6 Bump Length (m) 2

Runway 7/25 Centerline Profile- Bump Index Comparison 1.2 1 Index 1. APR.8.6.4.2 1.4 5 1 15 2 25 3 35 4 1.2 1 Index 1. Boeing.8.6.4.2 1.2 5 1 15 2 25 3 35 4 1 Index 1..8 FAA.6.4.2. 5. 1. 15. 2. 25. 3. 35. 4. 21 Conclusions Profiles from all three devices seem to match well- areas of roughness on runway correlate between all three. Boeing bump analysis consistent bump index values, although differing in magnitude, are maximum at the same locations along the runway Locations of overall worst bumps in same areas for all three profiling devices All three profilers are useful in determining general areas of roughness needing repair 22

Case Study 1- Transition Ramp Bump 23 Case Study 1- Transition Ramp Bump 24

Case Study 2- Lack of Proper Transverse Slope-Runway Contamination Standing water due to improper transverse gradient suspected of causing loss of 777 junction box clamps Water depth in some areas as high as 2.5 cm and in high speed braking areas. Flight performance manual suggests not taking off when contamination exceeds 1.25 cm, water impingement can cause structural damage. Lack of Proper Transverse Slope Junction box clamps on 777 truck beam susceptible to water impingement due to ponding.

Lack of Proper Transverse Slope Station +66 Elevation cm 4 35 3 25 2 15 1 5-5 5 1 15 2 25 3 35 4 45 Runway Width m Station +63 Elevation cm 4 35 3 25 2 15 1 5-5 5 1 15 2 25 3 35 4 45 Runway Width m Case Study 3- Unacceptable Roughness Condition 28

Boeing Runway Roughness Assessment- Unacceptable Condition-Plot of worst bumps 8 Unacceptable 7 6 24 profile Excessive Bump height (in) 5 4 3 Acceptable 25 profile 2 1 2 4 6 8 1 12 14 16 18 2 Bump Length (ft) 29 Boeing Runway Roughness Assessment- Unacceptable Condition 24 vs. 25 Survey 2 Unacceptable 24 1 Excessive 5 1 15 2 Primary takeoff direction Region of pilot complaints 2 Unacceptable Excessive 25 1 5 1 15 2 3

Working Toward an Industry Standard BOEING is a trademark of Boeing Management Company. Copyright 26 Boeing. All rights reserved. Pavement Roughness- Current Situation There is no industry standard which clearly defines when a airfield pavement has become too rough Problems can be aircraft specific New construction smoothness criteria is no longer applicable as pavement deteriorates Action by the airport is typically initiated by pilot complaints- FAA currently doing aircraft simulator research to assess pilot feedback on runways of varying roughness.

FAA Guidance on Roughness FAA Advisory Circular 15/538-9(released 9/3/9) FAA Software PROFAA Includes Boeing Bump 33 FAA Guidance on Roughness NEW CONSTRUCTION AC 15/53-13, Airport Design Surface Gradient Maximum grade allowance Change in grade provisions AC 15/537-1F, Standards for Specifying Construction of Airports Construction tolerances must be met Acceptance criteria for smoothness- straightedge or profilograph Experience has shown that the current FAA grade and straightedge criteria provide pavements that are safe for aircraft operations.

ICAO Roughness Curve Approved for Annex 14, Amendment 1, 4 th Edition 2 Bump height, cm 15 1 Unacceptable Excessive Temporarily acceptable 5 Acceptable 1 2 3 4 5 Bump length, m 6 35 ICAO Guidance- Annex 14, Attachment A Surface Unevenness Surface Irregularity Maximum surface irregularity height (cm) Minimum acceptable length of irregularity (m) 3 6 9 12 15 2 3 45 6 2.9 3.8 4.5 5 5.4 5.9 6.5 8.5 1 Temporary acceptable surface irregularity height (cm) 3.9 5.5 6.8 7.8 8.6 9.6 11 13.6 16 Unacceptable surface irregularity height (cm) 5.8 7.6 9.1 1 1.8 11.9 13.9 17 2 If the maximum limits are exceeded, corrective action should be undertaken as soon as reasonably practicable to improve the ride quality. If the temporarily acceptable limits are exceeded, the portions of the runway that exhibit such roughness should have corrective measures taken immediately if aircraft operations are to be continued. If the unacceptable limits are exceeded and the roughness resides in the area of aircraft operations, then the runway should be closed until repairs are made to restore the condition to the acceptable region. The maximum permissible step type bump, such as that which could exist between adjacent slabs, is simply the bump height corresponding to zero bump length at the upper end of the acceptable region of the roughness curve. The bump height at this location is 1.75 cm. 36

Recommendations for ASTM standard Recommended to take 3 profiles along entire runway length. One along centerline, and one each either side of centerline between 3-6m offset depending on aircraft gear configuration Profile interval spacing should not exceed.5m for best results Profile equipment tested all produce similar results and can be used for roughness profiling. FAA roughness program PROFAA can be used for Boeing Bump analysis. Profile smoothing similar to Boeing program and areas of roughness correlate well. Details for program usage found in AC 15/538-9. 37 Conclusions Aircraft are susceptible to three types of roughness, and the Boeing Bump Criteria addresses long wavelength type roughness, and to some extent fatigue loading effects on aircraft. Short wave roughness typically only a concern in Russia and the CIS due to poor construction techniques. Typical roughness problems based on Boeing experience in this area are the result of the following: Poor maintenance, failures in base and/or subbase materials, clay soils and issues dealing with moisture, and improper use of transition ramps. Guidance is needed for airports on how to address and measure roughness. Recent ICAO acceptance of the Boeing Bump, working towards developing an ASTM standard, and the FAA advisory circular and PROFAA software all provide technical guidance in this area. 38