Dr. Antonio A. Trani Professor of Civil Engineering Virginia Polytechnic Institute and State University. Spring 2015 Blacksburg, Virginia

Similar documents
Dr. Antonio A. Trani Professor of Civil Engineering Virginia Polytechnic Institute and State University. January 27, 2009 Blacksburg, Virginia

Runway Length Analysis Prescott Municipal Airport

Assignment 2: Runway Length Analysis

APPENDIX X: RUNWAY LENGTH ANALYSIS

Facility Requirements

Agenda: SASP SAC Meeting 3

FORT LAUDERDALE-HOLLYWOOD INTERNATIONAL AIRPORT ENVIRONMENTAL IMPACT STATEMENT DRAFT

CEE 5614 and CEE Aircraft Classifications. Spring 2013

CESSNA CITATION IIB PW JT15D-4 INTRODUCTION. Runway Analysis provides the means to determine maximum allowable takeoff and landing weights based upon:

CEE Quick Overview of Aircraft Classifications. January 2018

FAA SAFO Turbojet Braking Performance on Wet Runway SAPOE Recommendations

CHAPTER 1 BACKGROUND AND PROPOSED ACTION

Airport Runway Location and Orientation. CEE 4674 Airport Planning and Design

Assignment 3: Runway Length and EMAS Design. Aircraft Engine Remarks. CFM56-7B20/-7B22/-7B24 developing 20,000 lb of thrust at sea level

Chapter 5 Facility Requirements

Planning Horizon Activity Levels Airfield Capacity and Delay Airport Physical Planning Criteria Airfield and Landside Facility Requirements

According to FAA Advisory Circular 150/5060-5, Airport Capacity and Delay, the elements that affect airfield capacity include:

AIRFIELD CAPACITY AND FACILITY REQUIREMENTS

PORT OF PORTLAND. Chapter Four AVIATION FACILITY REQUIREMENTS

AIRSIDE CAPACITY AND FACILITY REQUIREMENTS

Revised National Business Aviation Association (NBAA) Noise Abatement Departure Procedures (NADPs) Noise Compatibility Committee

Aircraft Classifications. Dr. Antonio Trani and Julio Roa Department of Civil and Environmental Engineering.

JUNEAU RUNWAY INCURSION MITIGATION (RIM) PROGRAM JANUARY 25, 2017

CESSNA SECTION 5 PERFORMANCE

USE OF TAKEOFF CHARTS [B737]

CATCODE ] CATCODE

Quiet Climb. 26 AERO First-Quarter 2003 January

3.1 Facility Requirements Overview Airfield Facility Requirements... 1

Small Aircraft Transportation System (SATS) Environmental Noise Impact Study

Chapter 3. Demand/Capacity & Facility Requirements

Falcon 2000S & Challenger 350 Analysis

TABLE OF CONTENTS CHAPTERS. INTRODUCTION... i CHAPTER ONE: FORECAST OF AVIATION DEMAND

New Opportunities PUBLIC WORKSHOP. Venice Municipal. Bringing g the pieces together

FAA Requirements for Engine-out Procedures and Obstacle Clearance

FUEL MANAGEMENT FOR COMMERCIAL TRANSPORT

Evaluation of Alternative Aircraft Types Dr. Peter Belobaba

FACILITY REQUIREMENTS SUMMARY OF KEY ISSUES OVERVIEW

PLU Airport Master Plan. Master Plan Advisory Committee (MPAC) Meeting #4 March 19, 2018

SECURITY OVERSIGHT AGENCY May 2017 EXTENDED DIVERSION TIME OPERATIONS (EDTO)

FACILITY REQUIREMENTS 5.1 Introduction

Hartford-Brainard Airport Potential Runway Closure White Paper

Reliever Airports: NOISE ABATEMENT PLAN Flying Cloud Airport (FCM)

CHAPTER 3 ALTERNATIVES CONSIDERED

Time-Space Analysis Airport Runway Capacity. Dr. Antonio A. Trani. Fall 2017

Airport Obstruction Standards

CHAPTER 1 EXECUTIVE SUMMARY

PROPOSED HORIZONTAL LAYOUT FILLET DESIGN FOR ENTRANCE/EXIT TAXIWAYS

Noise Certification Workshop

INTERIM RUNWAY SAFETY AREA STUDY

Tallahassee International Airport Master Plan. Technical Advisory Committee Meeting #2 October 19, 2016

TAKEOFF SAFETY ISSUE 2-11/2001. Flight Operations Support & Line Assistance

Key Purpose & Need Issues

The offers operators increased capacity while taking advantage of existing airport infrastructure. aero quarterly qtr_03 10

Chapter 5. Facility Requirements

Executive Summary. MASTER PLAN UPDATE Fort Collins-Loveland Municipal Airport

The presentation was approximately 25 minutes The presentation is part of Working Group Meeting 3

DEPARTMENT: CIVIL ENGINEERING SEMESTER: III SUBJECT CODE / Name: CE2303/ Railway, Airport and Harbors Engineering 2 MARK QUESTIONS AND ANSWERS

AIRPORT MASTER PLAN ADVISORY COMMITTEE MEETING #2 AGENDA

C > Capacity Analysis and Facility Requirements

Dallas Executive Airport Town Hall Meeting April 3, 2014

PUBLIC MEETING 2. Airport Master Plan Update. March 2019

CHAPTER 5 - FACILITY REQUIREMENTS

STUDY WORK GROUP MEETING No. 3. November 29, 2016

Appendix B Ultimate Airport Capacity and Delay Simulation Modeling Analysis

Technical Memorandum. Synopsis. Steve Carrillo, PE. Bryan Oscarson/Carmen Au Lindgren, PE. April 3, 2018 (Revised)

APPENDIX C NOISE ANALYSIS

RSAT RUNUP ANALYSIS 1. INTRODUCTION 2. METHODOLOGY

St. Paul Downtown Airport (STP)

Airfield Design. Public Review Draft OVERVIEW BASIC DESIGN FACTORS. Airport Role

3.1 CRITICAL AIRCRAFT

USE OF LANDING CHARTS [B737]

1 DRAFT. General Aviation Terminal Services Aircraft Hangars Aircraft Parking Aprons Airport Support Facilities

Citation XLS Analysis - Owner & Charter Hour Contributions. Prepared March 31, 2017

RNP In Daily Operations

Runway Roughness Evaluation- Boeing Bump Methodology

Runway Roughness Evaluation- Boeing Bump Methodology

5. Facility Requirements

AirportInfo. Aeronautical Revenue

AIRPORT WITH NO RUNWAYS IS A MALL

6.C.1 AIRPORT NOISE. Noise Analysis and Land Use Impact Assessment FORT LAUDERDALE-HOLLYWOOD INTERNATIONAL AIRPORT ENVIRONMENTAL IMPACT STATEMENT

6.0 JET ENGINE WAKE AND NOISE DATA. 6.2 Airport and Community Noise

Master Plan Update Technical Advisory Committee Meeting

STAFF REPORT. Airport Land Use Plan Consistency Review: Santa Barbara Airport Master Plan. MEETING DATE: November 19, 2015 AGENDA ITEM: 7D

Jet Transport Airplane Performance - Briefing For Business Aviation Pilots & Operators

Chapter 4: Facility Requirements

Washington Dulles International Airport (IAD) Aircraft Noise Contour Map Update. Ultimate Operations 5th Working Group Briefing 9/25/18

CHAPTER 5 AEROPLANE PERFORMANCE OPERATING LIMITATIONS

July 2008 COMPANY INDOCTRINATION TRAINING 1.0 PURPOSE

4.0 FACILITY REQUIREMENTS

1.1.3 Taxiways. Figure 1-15: Taxiway Data. DRAFT Inventory TYPICAL PAVEMENT CROSS-SECTION LIGHTING TYPE LENGTH (FEET) WIDTH (FEET) LIGHTING CONDITION

Analysis of Air Transportation Systems. The Aircraft and the System

What's your fleet mix for design?

4.0 AIRFIELD CAPACITY & FACILITY REQUIREMENTS

DRAFT FINAL REPORT AIRPORT MASTER PLAN. Rifle Garfield County Airport Revised May 15, 2014

The Noise & Environmental office reviews airline schedules and night-time performance of the airlines operating at the Airport.

Advisory Circular (AC)

Chapter 3 FACILITY REQUIREMENTS

Section 3: Demand/Capacity Analysis and Facility Requirements

Chapter III - Demand/Capacity and Facility Requirements

Airport Master Plan Open House Front Range Airport February 23, 2017

Transcription:

CEE 4674 Airport Planning and Design Runway Length Calculations Addendum 1 Dr. Antonio A. Trani Professor of Civil Engineering Virginia Polytechnic Institute and State University Spring 2015 Blacksburg, Virginia CEE 4674 Airport Planning and Design 1

Runway Design Assumptions (FAA 150/5325-4b) For now lets ignore obstructions to navigation outside the airport (these will come later) The procedures in the advisory circular also assume: No wind conditions Zero runway gradient Dry runway conditions CEE 4674 Airport Planning and Design 2

Critical Design Aircraft A listing of aircraft or an individual aircraft that requires the longest runway length Federal funding requirements imply the critical aircraft should be used at least for 250 landings and 250 takeoffs (or 500 itinerant operations) Weight categories used in airport runway length design: Small airplane (MTOW < 12,500 lb. or < 5,670 kg) Large airplane - MTOW > 12,500 lb. (5,670 kg) and < 60,000 lb. (27,273 kg) Regional jets (typically > 60,000 lb. (27,273 kg) Commercial Airliners (typically > 120,000 lb.) CEE 4674 Airport Planning and Design 3

Steps in the Runway Length Procedure (5 steps) 1. Identify the list of potential critical airplanes 2. Identify the weights of the critical aircraft and associated with weights If the aircraft MTOW < 60,000 then the method used is based on a Family Grouping of Airplanes If the aircraft MTOW >= 60,000 then the method used is based on an Individual analysis Regional Jets use the second method even if the weigh < 60,000 lb 3. Use Table 1-1 and the critical aircraft in step 2 to decide on the recommended method for runway length required CEE 4674 Airport Planning and Design 4

Steps in the Runway Length Procedure (5 steps) Source: FAA 150/5325-4b CEE 4674 Airport Planning and Design 5

Steps in the Runway Length Procedure (5 steps) 4. Select the recommended runway length from various runway lengths generated in step # 3 5. Apply adjustments to the runway length obtained in step # 4 Runway gradient Wet pavement conditions CEE 4674 Airport Planning and Design 6

Definition of Primary Runway Most airports require only one primary runway Primary runways are designed and oriented so that 95% of the time the design crosswind components are not exceeded (more later in the course) However, sometimes multiple primary runways are needed for: Capacity reasons To accommodate forecasted growth To mitigate noise impacts Design objective for additional primary runways is contained in Table 1-2 CEE 4674 Airport Planning and Design 7

Table 1-2 in FAA AC 150/5325-4b CEE 4674 Airport Planning and Design 8

Table 1-3 in FAA AC 150/5325-4b CEE 4674 Airport Planning and Design 9

Runway Length Based on Declared Distance Concept New runways are expected to be designed according to the principles of Tables 1-1 and 1-2 Existing runways sometimes do not meet all new safety criteria The Declared Distance Concept provides a rational procedure to improve such runways We discuss this procedure later on in this course CEE 4674 Airport Planning and Design 10

Runway Length for Small Aircraft with MTOW < 12,500 lb (5,670 kg) Inputs to the procedure: Critical aircraft Approach speed (30% above the stalling speed) Number of passenger seats Airport elevation above mean sea level Mean daily maximum temperature of the hottest month of the year Use Figures 2-1 and 2-2 in AC 150/5325-4b No adjustment for runway gradient or wet pavement (e.g., landing performance) CEE 4674 Airport Planning and Design 11

Small Airplanes with Approach Speeds < 30 knots This group includes ultralight aircraft Recommended runway 300 feet (92 meters) at mean sea level conditions Increase runway by 30 feet for every 1000 feet in airfield elevation (0.03 x airfield elevation) In the U.S. ultralights are regulated by FAR Part 103 Web links: FAR 103 (http://www.fly-ul.com/ far-103.html) Wikipedia: http://en.wikipedia.org/wiki/ Ultralight#United_States http://www.ultralightnews.com/ssulbg/phantomphantomaeronautics.htm http://www.quicksilveraircraft.com/enjoy.php CEE 4674 Airport Planning and Design 12

Small Airplanes with Approach Speeds > 30 knots and < 50 knots This group includes some Light Sport Aircraft (LSA) Recommended runway 800 feet (244 meters) at mean sea level conditions Increase runway by 80 feet for every 1000 feet in airfield elevation (0.08 x airfield elevation) Web links: Sports pilot (http://www.sportpilot.org/ learn/slsa/) http://www.faa.gov/aircraft/gen_av/ light_sport/ Wikipedia: http://en.wikipedia.org/wiki/ Light-sport_aircraft http://flightdesignusa.com/aircraft/ctls/photos/ http://www.zenithair.com/zodiac/pic06/n602wh.jpg CEE 4674 Airport Planning and Design 13

Small Airplanes with Approach Speeds > 50 knots or MTOW < 12,500 lb This group includes most of the General Aviation (GA) aircraft Use Figure 2-1 and 2-2 in the FAA AC 150/5325-4b Figure 2-1 Aircraft with less than 10 seats (excluding pilot and co-pilot) Two family group designs (95% and 100% of the fleet) Figure 2-2 Aircraft with more than 10 seats (excluding pilot and copilot) CEE 4674 Airport Planning and Design 14

Figure 2-1 in AC 150/5325-4b CEE 4674 Airport Planning and Design 15

95 Percent of Fleet Selection of Percent of the Fleet This category applies to airports that are primarily intended to serve medium size population communities with a diversity of usage and a greater potential for increased aviation activities. Also included in this category are those airports that are primarily intended to serve low-activity 100 Percent of Fleet This type of airport is primarily intended to serve communities located on the fringe of a metropolitan area or a relatively large population remote from a metropolitan area CEE 4674 Airport Planning and Design 16

Small Aircraft < 10 seats Beech Baron 58 Cessna 421 Cessna 172 Shrike Commander Cessna 208 Caravan CEE 4674 Airport Planning and Design 17

Figure 2-2 in AC 150/5325-4b Raytheon Beech King Air A100 Representative Aircraft CEE 4674 Airport Planning and Design 18

Important Design Consideration For airfield elevations above 3,000 feet (914 meters) use the 100% fleet graph in Figure 2-1 instead of Figure 2-2 Reason: Small aircraft in Figure 2-1 are have reciprocating engine technology that is more prone to power degradation with altitude that aircraft included in Figure 2-2 Reciprocating engine Turboprop engine Runway length at high airport elevation CEE 4674 Airport Planning and Design 19

Assumptions in the Development of Curves (applies to curves in Figure 2-1 and 2-2) Curves shown in Figures 2-1 and 2-2 comply with Federal Aviation Regulations (FAR) 23 FAR Part 23 applies to the certification of small aircraft Assume the following conditions: Zero wind MTOW or MALW Airport elevation and temperature are parameters A 10% increase in the runway length values has been accounted for to compensate for humidity and runway gradient CEE 4674 Airport Planning and Design 20

Assumptions in the Development of Curves (applies to Figure 2-2) Curves shown in Figures 2-2 comply with 14 Code of Federal Regulations Part 135 (Operating Requirements: Commuter and On Demand Operations) Includes accelerate and stop distance calculations CEE 4674 Airport Planning and Design 21

Runway Length for Small Aircraft with MTOW > 12,500 lb (5,670 kg) and less than 60,000 lb (27,200 kg) Inputs to the procedure: Airport elevation (above mean sea level) Mean daily maximum temperature of the hottest month of the year Use Figures 3-1 and 3-2 in AC 150/5325-4b Requires adjustment for runway gradient or wet pavement (e.g., landing performance) CEE 4674 Airport Planning and Design 22

Runway Length for Small Aircraft with MTOW > 12,500 lb (5,670 kg) and less than 60,000 lb (27,200 kg) Use Tables 3-1 and 3-2 to determine the design group to use Determine the useful load factor (between 60% and 90%) Above 5,000 feet (airport elevations) the runway lengths for these aircraft might be less than those for smaller aircraft < 12,500 lb Curves are limited to 8,000 feet (2,439 meters) For higher elevations consult the aircraft manufacturers This procedure does not include runway length for air carriers CEE 4674 Airport Planning and Design 23

Figure 3-1 75% of Fleet (60 and 90% Useful Load) CEE 4674 Airport Planning and Design 24

Figure 3-2 100% of Fleet (60 and 90% Useful Load) CEE 4674 Airport Planning and Design 25

Sample Aircraft in 75% of the Fleet CEE 4674 Airport Planning and Design 26

Sample Aircraft in the Remaining 25% of the Fleet CEE 4674 Airport Planning and Design 27

Aircraft MTOW > 12,500 lb. (5,670 kg) and less than 60,000 lb. (27,200 kg) Beech King Air 350 Cessna Citation II (550) Dassault Falcon 900 Bombardier CL 601 Cessna Citation X (750) CEE 4674 Airport Planning and Design 28

Runway Length Adjustments Small Aircraft MTOW > 12,500 lb (5,670 kg) and less than 60,000 lb (27,200 kg) Values shown in Figures 3-1 and 3-2 apply with zero wind conditions and dry runway pavements Effective gradient correction (takeoff case) Increase runway length by 10 feet (3.05 meters) for every foot (0.305 meters) of runway elevation difference (low-high) Wet and slippery runway correction (landing case) Increase values obtained using the 60% useful load by 15% (for turbojet powered aircraft) up to 5,500 feet whichever is less Increase values obtained using the 90% useful load by 15% (for turbojet powered aircraft) up to 7,000 feet whichever is less CEE 4674 Airport Planning and Design 29

Final Note on Runway Length Small Aircraft MTOW > 12,500 lb (5,670 kg) and less than 60,000 lb (27,200 kg) For airports at high elevation, the performance of smaller aircraft below 12,500 lb may be dominant CEE 4674 Airport Planning and Design 30

Example: BCB Improvements Airport: BCB (Blacksburg) Issue: Improve the airport to serve 75% of the aircraft population < 60,000 lbs and 60% of useful load Airport elevation = 2,132 feet Mean daily maximum temperature of the hottest month of the year = 83 o F Obtained from average high temperatures on the weather channel (or at NOAA) CEE 4674 Airport Planning and Design 31

Information about BCB Airport (source: www.airnav.com) CEE 4674 Airport Planning and Design 32

BCB Temperature Profile (source: www.weather.com) CEE 4674 Airport Planning and Design 33

BCB Runway Information (source: www.airnav.com) CEE 4674 Airport Planning and Design 34

Runway Length Calculation Use Figure 3-1 and 60% useful load curve Runway length = 5,200 feet Mean daily maximum temperature o F CEE 4674 Airport Planning and Design 35

Runway Length Estimation (BCB) Corrections Effective gradient correction (takeoff case) Increase runway length by 10 feet (3.05 meters) for every foot (0.305 meters) of runway elevation difference (low-high) 0.4% grade implies a delta elevation of around 18 feet Increase Runway Length by 180 feet (or 5380 feet) Wet and slippery runway correction (landing case) Increase values obtained using the 60% useful load by 15% (for turbojet powered aircraft) up to 5,500 feet whichever is less Min (5980 feet, 5500 feet) = 5,500 feet CEE 4674 Airport Planning and Design 36

Runway Improvement at BCB Would need a 5,500 feet runway Accommodates 75% of the aircraft population below 60,000 lb at 60% useful load factor This improvement would better serve the large population of corporate jets in the U.S. By the way, during football games many small corporate jets operate in and out of the airport CEE 4674 Airport Planning and Design 37