WATER RESOURCES AND DEVELOPMENT OF ENERGETICS IN NORTHERN KOSOVO AND NORTHERN METOHIJA

Similar documents
CLIMATIC REGIONS OF KOSOVO AND METOHIJA. Radomir Ivanović 1, Aleksandar Valjarević 1, Danijela Vukoičić 1, Dragan Radovanović 1.

International Sava River Basin Commission

Implementation of WFD in Serbia and Montenegro

1 st US - Kosovo Trade Forum New York, New York

Pumped storage hydroelectric power plants: Issues and applications BIH Case Study

Conservation of Biodiversity and sustainable land use management in Municipality of Dragash

Towards practical Guidance for Sustainable Sediment Management using the Sava River as a showcase

Review on Agriculture and Rural Development vol. 2. (1) ISSN

IRRIGATION IN AGRICULTURE AND CLIMATE CHANGE. Agrotech, 2017

Reforms in Kosovo s power System

Flood Prevention Map (FPM) for Leposaviq/Leposavić, Zveçan/Zvečan and Zubin Potok municipalities, northern Kosovo

43. DEVELOPMENT AND DISTRIBUTION OF TOURISM

POLICY BRIEF. Waters of Kosovo. 1. Introduction. 2. Legislative and institutional framework

Hydrological study for the operation of Aposelemis reservoir Extended abstract

The Potential of Renewable Energy Sources in Bosnia and Herzegovina

The Timok River Basin in Serbia

2014 floods in Serbia

FOREIGN TRADE OF KOSOVO AND IMPACT OF FISCAL POLICY

Third International Scientific Symposium "Agrosym Jahorina 2012"

An Example of Small Scale Geothermal Energy Sustainability: Chena Hot Springs, Alaska. Mink, Leland; Karl, Bernie; and Karl, Connie

Master Thesis IMPLEMENTATION OF PROMOTION IN ENTERPRISES OF MILK PROCESSING / CASE KABI DAIRY

H Marie Skłodowska-Curie Actions (MSCA)

OPEN SEASON Phase 2 Rules. Project on the development and expansion of Bulgartransgaz EAD gas transmission system (GTS)

TM COMPRESSOR, ROTARY: AIR DIESEL ENGINE DRIVEN; 250 CFM ORGANIZATIONAL, DS, GS, AND DEPOT MAINTENANCE MANUAL

Intermediate report. Letter of agreement FAO - GCB/RAB/013/ITA

REPORT of the visit of eminent experts in karstоlogy Derek Ford and Petar Milanović to the Centre for Karst Hydrogeology

3. BOREHOLES. Franko GEOTHERMAL ENERGY EXPLORATION IN SLOVAKIA. Ondrej Franko. Institute of Geology, Bratislava

Pilgrimage Tourism of Shegaon Town: A Study With Respect To Geographical Perspective And Purpose of Visit.

The Importance of the geographical position of Kosovo in increasing the Trade, Transit and International Transport in the Balkans

Xaman-Ha city, an answer to the poor growth and spread population

Original scientific paper UDC: 911.2: (497.11) DOI: /IJGI M THERMIC REGIME AND AIR TEMPERATURE TRENDS IN ŠUMADIJA REGION (SERBIA)

Thermal Analysis of Clay Pot in Pot Refrigerator

World Design Capital Taipei 2016 International Design House Exhibition Exhibition Participation Procedures

Evaluation of realized investments in Belgrade s and Danube region

TERRITORIAL AND NATURAL PRIORITIES OF MACEDONIA - IMPORTANT FACTOR FOR TOBACCO PRODUCTION DEVELOPMENT

7. Education Degree: Institution: Darmstadt University of Technology, Darmstadt, Germany Degree Date: Degree : Dr.-Ing.

Freezer Vessel Hygiene Checklist

1. PROJECT TITLE LOWER DRINA HYDROPOWER PLANTS

Planning of Sustainable Tourism in Kosovo western region is a key factor for all involved in touristic offer

Draft LAW. ON SOME AMENDAMENTS IN THE LAW No.9587, DATED ON THE PROTECTION OF BIODIVERSITY AS AMENDED. Draft 2. Version 1.

Socio-demographic and Economic Profiles of the Regions in the Republic of Macedonia

Paper 87 - INTERNATIONAL COLLABORATION CONCERNING THE USE OF THE DANUBE RIVER IN ROMANIA

REVIEW OF HPP ZHUR FEASIBILITY STUDY INCLUDING PREPARATION OF PRELIMINARY EIA AND PRELIMINARY SA

The Role of Gauteng in South Africa s Backpacking Economy

Analysis of Instrument Approaches to GA Aerodromes in the World

Outline. The main objectives. The main objectives. Distribution of stable isotopes in the Sava River in Serbia

UNIVERZITET U BEOGRADU RUDARSKO GEOLOŠKI FAKULTET DEPARTMAN ZA HIDROGEOLOGIJU ZBORNIK RADOVA. ZLATIBOR maj godine

Complex of flood control structures of Saint Petersburg Facility S1, Saint Petersburg, Russia

AIRLINE BUSINESS ON THE WEB AND CHALLENGES FOR AIRLINES IN SRI LANKA

Kosovo s economic and investment potential

International Sava River Basin Commission

The Effect of an Efficient Public Transport System on Poverty: Lessons for Johannesburg from Bogotá Eugenia Mpofu

EU ECOLABEL USER MANUAL TOURIST ACCOMMODATION Commission Decision for the award of the EU Ecolabel for tourist accommodation (2017/175/EC)

Tel:

Transboundary Water Management in Republic of Macedonia

AN ANALYSIS OF THE CAUSES OF DEATH IN DARLINGHURST GAOL AND THE FATE OF THE HOMELESS IN NINETEENTH CENTURY SYDNEY DR.

Knowledge of homemakers regarding base materials used for cooking utensils

International Osoyoos Lake Board of Control Annual Report to the International Joint Commission

4 (iv) Visit to KazEnergy, Astana Presentation on the structure and strategy of the organisation,

ACTIVITIES RELATED TO THE WFD IMPLEMENTATION IN SERBIA AND MONTENEGRO WB, HMWB AND AWB - PRELIMINARY IDENTIFICATION

SUPPORT TO WATER RESOURCES MANAGEMENT IN THE DRINA RIVER BASIN DRAFT ROOF REPORT INTRODUCTION AND GENERAL APPROACH

Environmental Management System for Tourist Accommodations in Amphawa, Samut Songkram,Thailand

Original scientific paper UDC: 911.2:551.58(497.11) DOI: /IJGI S ANALYSIS OF ANNUAL SUMS OF PRECIPITATION IN SERBIA

Thermal efficiency improvement and technology transfer of chimney stove for producing stove; Amphoe Bo Kluea, Nan Province

Chapter 7 Snow and ice

Glaciers. Reading Practice

THE NORTH ATLANTIC OSCILLATION (NAO) AND THE WATER TEMPERATURE OF THE SAVA RIVER IN SERBIA

Seasonal Variability of the Groundwater Regime for Several Aquifers in Bulgaria Tatiana Orehova 1

Regulation (EU) 965/2012 on air operations. and related EASA Decisions (AMC&GM and CS-FTL.1)

INSURED - INFORMATION SYSTEM FOR AN INTEGRATED AND SUSTAINABLE USE OF WATER RESOURCES OF DRINI-DRIM RIVER

Blocking Sea Intrusion in Brackish Karstic Springs

Research on Management of Ecotourism Based on Economic Models

Water resource situation of the Republic of Djibouti

The new strategic plan in Kosovo to implement a health insurance scheme

CO-OPERATION IN DANUBE RIVER BASIN - THE ROLE OF SHMI SLOVENSKÝ HYDROMETEOROLOGICKÝ ÚSTAV

Active Geodetic Network of Serbia

THE PROBLEMS AND PROSPECTS OF DOMESTIC TOURISM SECTOR IN SRI LANKA. (A Case Study on Kataragama Sacred City and Yala (Ruhuna) National Park).

The Implications of Balkan Accession for the economy of Greece

Framework Agreement on the Sava River Basin and its implementation

Cau River. Map of River. Table of Basic Data. Vietnam 5

THE STRENGTHS OF PROMOTION STRATEGIES IN PUBLIC RELATIONS OF SOLO PARAGON LIFESTYLE MALL IN HANDLING KARTINI EVENT

Water resources for Botswana

Project Data Sheet BASIC PROJECT DATA. Rehabilitation and Development of Transport and Navigation on the Sava River Waterway. Full project title:

Republika e Kosovës Republika Kosova-Republic of Kosovo Qeveria - Vlada - Government New Kosovo Project

Project of E-763 Motorway Construction, Section: Belgrade Ostružnica - Požega Boljare/ Border of Montenegro

Latin America. Physical Geography

What I want to know about the Balkans.

THE IMPLEMENTATION OF EWFD/WFD IN THE REGION OF VOJVODINA WITHIN JOINT SLOVAK-SERBIA SERBIA PROJECTS

Version 8.5 PENTAGON 2000 SOFTWARE. Flight Operations Module

THE MUNICIPALITY of PROZOR-RAMA

REPORT Of the Symposium KARST 2018 EXPECT THE UNEXPECTED Trebinje, Bosnia & Herzegovina June, 2018.

Promotion of the Efficient Use of Renewable Energies in Developing Countries

STANSTED AIRPORT LIMITED REGULATORY ACCOUNTS PERFORMANCE REPORT FOR THE YEAR ENDED 31 MARCH Financial Review...1. Performance Report...

USE OF MICROENCAPSULATED PCM IN BUILDINGS AND THE EFFECT OF ADDING AWNINGS

2 Department of MBA, Kalasalingam University,

MAPs sector in Bosnia and Herzegovina

Disaster relief emergency fund (DREF) Kosovo: Extreme winter conditions / Snowstorm

M I N U T E S OF THE 12 TH MEETING OF THE ADMINISTRATIVE BOARD OF THE BALKAN UNION OF METALLURGISTS

Effect of Support Conditions on Static Behavior of 1400m main span and 700m side span Cable-stayed Bridge

LESOTHO HIGHLANDS DEVELOPMENT AUTHORITY

Transcription:

WATER RESOURCES AND DEVELOPMENT OF ENERGETICS IN NORTHERN KOSOVO AND NORTHERN METOHIJA Dragan V. Kalaba, Gordana Milentijević Faculty of technical sciences Kosovska Mitrovica, Knjaza Miloša 7, Kosovska Mitrovica, Serbia ABSTRACT From the total lignite reserves in Serbia, over 76% are situated in Kosovo and Metohija in three coal basins, Kosovo, Metohija and Drenica. The exploitation of these reserves is nowadays conducted in two surface pits, in Kosovo coal basin. The produced coal is mostly used for supply of thermo electric power plant Kosovo A and B, with total installed power of 1519 MW. In projects for the development of energetic, a construction of new thermoelectric power plants is planned, Kosovo C 2100 MW (7x 300 MW), the extension of thermoelectric power plants Kosovo B for 2x 339 MW, and also the rehabilitation of some of the units of the existing power plant Kosovo A. In the Kosovo basin, for the purpose of already built and projected thermoelectric power plants, there are used, or planned to be used the limited water resources of the river Lab and Ibar. This strategy had an impact to the total degradation of eco-systems of river Lab (especially in summer), while eco-system of Ibar river lives at the very limits of its ecological minimum. On the other side, Metohija coal basin, and its water resources are not exploited for energetic needs, although the largest river in Kosovo and Metohija, Beli drim is situated there. From all these statements mentioned above, there is a need to consider the limitations in the development of energetic in Kosovo and Metohija, from this point of view. KEYWORDS Hydrosystem, water profile, water supply system, thermoelectric power plant, water balance 1. INTRODUCTION From the total lignite reserves in Serbia, over 76% are situated in Kosovo and Metohija in three coal basins, Kosovo, Metohija and Drenica. The exploitation of these reserves is nowadays conducted in two surface pits, in Kosovo coal basin. The produced coal is mostly used for supply of thermo electric power plant Kosovo A and B, with total installed power of 1519 MW. In projects for the development of energetic, a construction of new thermoelectric power plants is planned, Kosovo C 2100 MW (7x 300 MW), the extension of thermoelectric power plants Kosovo B for 2x 339 MW, and also the rehabilitation of some of the units of the existing power plant Kosovo A. In the Kosovo basin, for the purpose of already built and projected thermoelectric power plants, there are used, or planned to be used the limited water resources of the river Lab and Ibar. This strategy had an impact to the total degradation of eco-systems of river Lab (especially in summer), while eco-system of Ibar river lives at the very limits of its ecological minimum.

On the other side, Metohija coal basin, and its water resources are not exploited for energetic needs, although the largest river in Kosovo and Metohija, Beli drim is situated there. From all these statements mentioned above, there is a need to consider the limitations in the development of energetic in Kosovo and Metohija, from this point of view. 2. HYDRO-GEOGRAPHIC CHARACTERISTICS OF WATER RESOURCES The dominant water resource existing on the north of Kosovo is river Ibar (with its tributaries), and on the north of Metohija it is river Beli drim (with its tributaries) (Fig. 1) Fig.1. Springs and confluences of rivers Ibar and Beli drim on the territory of Northern Kosovo and Metohija The largest river is Beli Drim. It is consisted by strong karsts aquifer, sourcing on the north of Ped. It flows through Metohija basin, in total length of 108,5 km, to the village Vrbnica, where it enters into territory of Albania. The significant right tributaries are: Pedka Bistrica, Dečanska Bistrica, Lodanska Bistrica and Erenik. It has also some left tributaries: Istok River, Klina, Miruša and Topluga. The Beli drim spring, i.e. spring Radavac, collects water from limestone massive of Maja Rusolja and Žljeb. It occurs in the village Radavac, near Ped, on the contact zone of limestone with diabase- horn formation on the altitude of 560-600 meters above the sea level. The confluence area of Beli drim is assumed to be 120 square kilometres, which represents major part of the surface of the mountains of Maja Rusolije and Žljeb. Beli Drim spring is the largest spring in Kosovo and Metohija. Minimum spring yield is 1200-1500l/s. The maximum spring yield is over 1500 l/s. The average yield is 3000 l/s. For the purpose of industry and irrigation this spring was partially captured. The capacity of the capture from the spring is 350 l/s.

River Ibar is the second largest river by the water amount in Kosovo and Metohija. The sourcing part of the river is situated in the territory of south-eastern Montenegro. As Beli drim, it is consisted from the karst aquifer, sourcing on mountain Hajla, at 1360 m above sea level. The spring occurs on the contact of Triassic limestone in the roof, and Palaeozoic schists in the floor. Until Kosovska Mitrovica, it flows from the west to the east, and after that deflects on the north. From Ribaride to Gazivode, Ibar River is transformed to Accumulation Lake, with water used for irrigation through the system Ibar-Lepenac, than for water supply, and hydroelectric power plant. Its length in Kosovo and Metohija is 50 km. Ibar inflows into Zapadna Morava near Kraljevo after total flow of 272,25 km. The significant tributaries from the right are: Bukeljska River, Badka River, Crna River, Čečevska River, Sitnica, Bistrica, Sočanska River, Leposavska River, Drenska River and Srpska bistrica. The significant left tributaries are: Županica, Godulja, Vidrenjak, Paljevska River, Banjska River, Vučanska River and Jošanica River. Between right Ibar tributary Sitnica and Lab there are located thermoelectric power plants Kosovo A and B. The accumulation lake Gazivode, on river Ibar, with its water supply system fulfilled the needs for fresh water of thermoelectric plant Kosovo B, Kosovska Mitrovica and Prishtina water supply systems, and in the summer it provides water for irrigation systems in the agriculture of Central Kosovo. The quantities of water for these purposes were given in table 1. In the frame of water system Gazivode there are also two hydroelectric power plants 2x 17,5 MW. In full operational conditions they use 23 m 3 /s of the water. Table 1. Water distribution from the water system Gazivode No. 1 2 3 Consumer Thermoelectric power plant Kosovo B Water supply system K.M. and Prishtina Agriculture quantity 0,8 1,0 1,2 Note - - only in summer period 4 Total 3 average 3. RIVER IBAR AND BELI DRIM FLOWS MEASURED AT THE CHARACTERISTIC PROFILES Two flows for two profiles (measuring points) were chosen on river Ibar: Batrage and Leposavid (Tables 2. and 3.) There were also given the flows for river Sitnica, right tributary of Ibar at profile Nedakovac (Table 4.) and flow of the right tributary of Sitnica, river Lab at the profile Miloševo, Table 5. For the river Beli Drim, the flow is presented for profile Kpuz in the table 6. The data about the flows in the characteristic profiles were given for the observed period from 1991 to 1999.

Table 2. Flow of river Ibar for profile Batrage Confluence river profile Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 water-level observation method start altitude (mnm) km from the mouth surface (km) Z. Morave Ibar Batrage limnigraf 1980 815.00 230.00 703.00 Months Q I II III IV V VI VII VIII IX X XI XII LQ 1.400 0.760 6.050 4.020 5.220 2.300 3.300 1.240 0.600 0.400 1.000 1.700 0.400 AQ 3.620 2.130 13.700 9.550 12.300 10.800 9.830 2.700 1.050 1.500 8.010 2.970 6.540 HQ 7.050 5.840 27.600 23.100 29.600 44.600 38.400 7..570 5.020 10.800 48.500 6.250 48.500 LQ 0.880 0.880 4.050 8.870 3.250 2.230 1.370 0.440 0.280 0.300 0.620 0.818 0.818 AQ 1.660 1.740 8.180 22.000 7.1700 10. 400 4.190 0.850 0.390 1.120 6.630 2.370 5.370 HQ 2.650 4.400 30.800 49.400 21.600 36.900 13.500 2.620 0.976 7.010 44.600 4.070 49.400 LQ 0.739 0.588 0.739 7.630 2.620 0.976 0.588 0.588 0.290 0.300 0.336 0.897 0.290 AQ 1.250 0.823 8.750 21.100 8.220 2.470 0.759 0.792 1.060 1.480 1.410 7.650 4.660 HQ 2.910 1.450 29.200 47.600 16.000 16.000 1.370 1.290 6.700 8.560 10.900 40.400 47.600 LQ 2.810 2.810 5.220 5.020 3.890 1.760-0.602 0.250 0.200 0.200 0.678 - AQ 3.760 5.380 7.820 10.800 11.300 3.760-1.060 0.435 0.582 0.924 1.360 - HQ 6.250 10.800 16.200 24.500 27.000 11.100-1.850 0.754 0.944 1.850 2.00 - LQ 2.450 6.180 4.900 7.450 11.000 2.190 2.060 1.800 3.100 2.060 1.800 2.840 1.800 AQ 5.210 10.200 9.720 19.000 14.200 5.830 2.920 3.100 4.640 2.610 2.540 6.650 7.180 HQ 16.600 15.400 14.200 53.800 19.100 11.700 4.540 5.410 7.760 3.460 4.000 16.600 53.800 LQ 1.930 1.800 2.840 8.080 7.450 1.710 1.190 0.6638 1.110 2.710 6.180 5.920 0.638 AQ 6.290 2.560 5.270 15.300 16.100 3.480 1.380 1.010 4.860 6.670 14.100 19.200 8.030 HQ 16.200 4.180 8.080 21.900 37.900 7.190 1.620 1.440 16.600 13.500 35.200 53.100 53.100 LQ 4.200 2.330 4.540 9.740 11.400 1.910 1.150 1.370 0.540 0.540 1.480 3.040 0.540 AQ 7.760 3.490 6.610 21.100 17.500 5.810 1.970 2.070 0.822 1.710 2.390 5.080 6.370 HQ 13.800 5.560 12.400 33.900 28.600 15.500 2.890 3.470 1.480 4.370 3.620 8.360 33.900 LQ 1.810 1.150 2.640 2.430 3.330 1.480 0.700 0.700 0.700 2.540 5.900 2.640 0.700 AQ 2.790 5.390 4.610 9.730 7.770 4.740 2.450 1.090 5.740 11.400 9.300 5.010 5.820 HQ 3.910 12.700 7.500 33.300 13.800 9.510 10.700 2.750 13.800 18.900 15.500 16.200 33.300 LQ 2.020 1.700 6.500 12.700 7.300 - - - - - - - - AQ 2.960 4.160 10.700 23.000 12.000 - - - - - - - - HQ 3.760 7.700 18.200 43.900 33.900 - - - - - - - -

Table 3. Flow of river Ibar for profile Leposavid Confluence river profile water-level observation method start altitude (mnm) km from the mouth surface (km) Z.Morave Ibar Leposavid limnigraf 1934 445.32 131.00 4701.0 Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 Months Q I II III IV V VI VII VIII IX X XI XII LQ 9.340 10.010 18.000 17.000 24.000 15.200-7.240 7.880 9.720 12.000 12.800 - AQ 12.300 22.000 33.000 45.700 33.300 21.400-8.790 10.500 13.500 18.800 21.800 - HQ 33.700 119.000 74.300 126.000 102.000 70.600-15.200 34.300 45.700 60.700 55.400 - LQ 13.200 13.200 11.600 14.800 10.900 11.600 10.100 8.200 7.560 7.880 8.960 11.600 7.560 AQ 22.600 17.700 15.100 53.400 13.800 13.700 13.300 9.610 9.670 9.340 18.300 18.100 17.800 HQ 59.900 56.300 29.500 135.000 23.000 28.500 38.100 37.400 38.800 11.200 72.000 56.300 135.000 LQ 11.200 12.000 13.200 16.500 12.000 9.720 7.240 6.600 6.280 7.560 8.960 11.200 6.280 AQ 20.800 32.000 36.000 41.900 17.000 11.500 8.240 7.810 7.300 7.910 11.000 16.600 18.100 HQ 58.000 61.600 125.000 91.000 40.400 50.500 15.600 25.900 14.800 8.200 15.600 64.200 125.000 LQ 20.000 21.000 12.400 12.000 11.600 10.100 9.720 5.640 6.280 - - - - AQ 21.000 32.700 14.800 17.500 16.200 10.900 12.300 7.130 7.090 - - - - HQ 23.000 51.800 22.500 53.600 24.000 12.800 66.200 9.340 8.200 - - - - LQ 6.280 14.400 12.400 18.000 16.800 11.200 8.580 8.960 11.200 10.500 16.000 21.500 6.280 AQ 13.700 18.200 15.100 45.900 29.100 14.500 13.700 11.200 15.900 16.200 24.500 40.300 21.500 HQ 36.000 30.000 22.500 152.000 38.800 17.600 40.900 28.000 51.800 41.600 55.400 91.600 152.000 LQ 16.800 18.800 23.500 36.000 19.200 7.560 7.880 7.880 9.720 12.400 13.200 37.400 7.560 AQ 27.600 56.800 40.700 74.200 29.300 12.400 9.480 9.280 16.400 15.400 45.500 75.100 34.200 HQ 74.000 244.000 118.000 156.000 53.600 19.200 15.600 19.200 33.600 34.800 163.000 206.000 244.000 LQ 50.000 20.500 18.000 44.400 26.000 16.000 17.600 11.200 8.960 10.500 11.600 13.600 8.960 AQ 88.000 34.200 37.700 91.500 43.500 27.400 20.300 21.900 13.400 13.700 13.800 26.900 36.000 HQ 226.000 56.300 81.900 177.000 83.600 41.600 27.000 33.000 21.500 23.000 23.500 76.600 226.000 LQ 13.600 14.400 16.000 16.000 15.200 6.920 4.500 6.280 9.720 14.400 16.800 29.000 4.500 AQ 16.300 31.000 23.600 20.900 21.100 13.300 6.030 7.450 15.300 21.600 32.100 59.400 22.300 HQ 19.200 94.300 60.600 53.600 30.000 22.000 8.960 8.960 21.100 43.000 63.800 174.000 174.000 LQ 33.600 40.200 - - - - - - - - - - - AQ 76.500 102.000 - - - - - - - - - - - HQ 225.000 320.000 - - - - - - - - - - -

Table 4. Flow of river Sitnica for profile Nedakovac Confluence river profile water-level observation method start altitude (mnm) km from the mouth surface (km) Ibra Sitnica Nedakovac limnigraf 1953 511.48 26.00 2590.00 Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 Months Q I II III IV V VI VII VIII IX X XI XII LQ 3.000 3.000 10.800 9.600 7.830 3.000 3.000 1.960 1.540 1.500 1.420 1.050 1.050 AQ 4.190 13.700 23.900 27.500 15.200 6.950 5.650 3.160 1,760 3.690 3.990 1.660 9.240 HQ 8.100 56.000 58.700 57.800 39.500 14.300 22.100 4.920 2.350 8.100 14.300 3.480 58.700 LQ 4.820 4.950 5.150 5.900 4.750 5.010 2.290 2.250 2.450 2.630 2.690 4.170 2.250 AQ 5.280 5.720 5.920 35.300 8.130 5.950 4.790 2.410 2.680 3.060 9.520 7.610 7.980 HQ 6.010 7.130 9.050 85.600 16.200 9.050 7.630 2.630 2.990 3.750 77.200 19.400 85.600 LQ 3.890 4.170 5.300 8.300 5.130 2.910 2.630 2.330 2.450 2.630 2.630 3.150 2.330 AQ 5.150 5.180 21.000 26.700 9.040 4.400 3.330 2.610 3.290 3.130 3.150 6.290 7.770 HQ 10.200 7.200 64.800 66.200 18.00 7.010 3.890 4.790 8.740 3.890 3.510 17.700 66.2 LQ 4.790 4.960 5.300 4.450 3.890 3.150 2.830 2.410 2.410 2.750 2.750 2.630 2.410 AQ 8.990 15.000 8.930 11.600 7.990 5.330 6.140 2.600 2.740 3.080 3.110 2.790 6.460 HQ 27.600 120.000 26.100 29.900 15.300 11.500 8.520 3.070 3.150 4.620 4.450 3.890 120.000 LQ 2.990 7.420 4.790 9.660 8.300 2.750 2.570 3.150 4.450 3.390 3.510 7.640 2.570 AQ 7.990 12.000 7.530 30.900 13.000 4.780 3.400 4.560 7.180 4.790 5.810 20.500 10.200 HQ 36.600 26.100 16.500 109.000 24.600 10.700 7.420 11.500 13.900 13.100 12.300 79.800 109.000 LQ 6.820 6.820 10.400 17.400 9.360 2.750 2.410 3.070 4.680 4.370 4.370 12.400 2.410 AQ 11.500 24.300 19.100 42.700 13.400 4.760 2.860 4.270 9.150 5.520 14.500 25.100 2.410 HQ 28.800 169.000 66.900 105.000 21.400 9.520 3.510 7.200 19.700 11.700 95.300 107.000 169.000 LQ 9.030 6.630 8.100 21.000 7.800 2.990 3.150 3.750 3.630 4.220 4.990 6.060 2.990 AQ 30.700 8.420 17.100 37.100 12.600 6.980 4.430 4.520 4.200 5.630 5.660 14.100 12.600 HQ 129.000 34.000 53.000 101.000 20.600 12.500 5.680 6.630 4.990 9.690 6.820 49.40 129.000 LQ 5.490 5.490 6.250 6.250 5.870 4.530 3.270 3.150 4.530 5.870 7.500 6.820 3.150 AQ 7.110 20.700 13.700 8.930 10.200 6.360 3.900 3.790 6.230 10.500 16.000 24.500 10.900 HQ 9.030 97.500 49.400 15.900 18.000 13.400 5.140 5.680 7.500 30.100 36.000 119.000 119.000 LQ 6.440-20.800 14.400 - - - - - - - - - AQ 32.700-37.600 23.700 - - - - - - - - - HQ 155.000-97.500 42.500 - - - - - - - - -

Table 5. Flow of river Lab for profile Miloševo Confluence river profile water-level observation method start altitude (mnm) km from the mouth surface (km) Sitnice Lab Miloševo letva 1951 530.16 11.40 923.00 Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 Months Q I II III IV V VI VII VIII IX X XI XII LQ 0.520 0.520 3.320 5.000 3.320 0.620 0.4320 0.520 0.100 0.100 0.000 0.260 0.000 AQ 1.050 1.190 6.160 10.700 5.910 2.640 0.983 0.739 0.262 0.513 2.380 0.954 2.790 HQ 1.800 3.840 16.200 19.500 14.600 5.600 1.800 0.938 0.520 1.480 12.800 2.580 2.790 LQ 0.750 0.900 1.560 2.400 0.938 0.720 0.441 0.200 0.200 0.248 0.621 1.050 0.200 AQ 1.050 1.640 2.040 13.600 1.860 2.300 2.240 0.333 0.223 0.570 5.340 2.750 2.810 HQ 1.400 2.200 3.760 43.100 6.320 2.800 5.600 0.522 0.296 0.720 16.800 5.600 43.100 LQ 1.100 0.504 0.780 1.750 1.050 0.276 0.092 05050 0.062 0.152 0.188 0.260 0.050 AQ 1.480 0.822 3.060 4.970 1.780 0.557 0.157 0.094 0.458 0.197 0.226 0.442 1.190 HQ 1.750 1.340 7.290 10.300 3.250 1.100 0.396 0.140 2.800 0.440 0.260 05880 10.300 LQ - 1.400 1.400 1.400 2.200 0.650 0.775 0.200 0.200 0.200 0.320 0.320 - AQ - 2.930 3.570 8.620 5.900 0.832 1.240 0.592 0.393 0.296 0.389 0.413 - HQ - 8.840 7.400 15.200 10.600 1.400 2.200 1.400 0.522 0.522 0.522 0.522 - LQ 0.775 2.040 1.400 2.400 3.200 1.100 0.700 0.800 0.800 0.700 0.650 2.400 0.650 AQ 2.380 2.330 2.190 9.110 5.670 2.060 0.814 1.380 1.470 0.956 1.670 8.370 3.200 HQ 18.000 3.760 2.700 18.200 10.600 2.600 0.900 4.600 3.200 1.200 5.680 25.800 25.800 LQ 1.430 1.190 2.850 8.840 3.750 0.900 0.150 0.150 0.360 0.500 0.650 2.520 0.150 AQ 2.990 5.520 5.300 14.300 6.500 1.690 0.380 0.322 1.260 0.780 3.850 6.770 4.120 HQ 12.600 53.500 17.100 35.900 11.500 3.600 0.850 0.500 12.000 1.750 20.600 24.600 53.500 LQ 3.060 1.800 2.580 13.000 3.320 0.621 0.720 0.938 0.360 0.522 0.621 1.330 0.360 AQ 14.700 2.740 8.650 25.700 7.620 3.250 1.360 1.320 0.568 1.260 0.904 3.200 5.950 HQ 55.400 14.600 33.800 67.200 19.000 7.800 2.360 1.640 1.330 2.360 1.330 9.000 67.200 LQ 1.050 1.330 1.980 1.330 2.160 0.720 0.360 0.441 0.826 1.980 2.800 1.800 0.360 AQ 1.450 7.870 3.740 3.090 3.780 1.960 0.767 0.631 2.640 3.790 6.310 6.950 3.350 HQ 1.980 36.600 6.320 10.700 6.680 7.040 2.360 0.826 4.100 7.600 12.600 22.900 36.600 LQ 1.800 3.060 9.000 - - - - - - - - - - AQ 13.600 14.900 19.800 - - - - - - - - - - HQ 66.400 63.200 50.500 - - - - - - - - - -

Table 6. Flow of river Beli Drim for profile Kpuz Confluence river profile water-level observation method start altitude (mnm) km from the mouth surface (km) Drima Beli Drim Kpuz limnigraf 1952 351.33 59.00 2116.0 Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 Months Q I II III IV V VI VII VIII IX X XI XII LQ 7.990 7.700 15.700 17.600 34.100 11.900 10.000 5.020 5.180 5.940 8.860 10.600 5.020 AQ 10.900 13.200 23.200 31.800 44.300 35.100 17.000 8.030 6.180 10.300 25.400 14.500 20.000 HQ 13.800 32.400 50.200 93.600 68.900 64.000 31.900 15.300 7.990 38.200 82.800 30.800 93.600 LQ 6.140 6.140 6.140 9.550 14.200 8.450 2.980 2.370 3.140 4.600 6.360 6.580 2.370 AQ 7.260 6.550 7.320 37.200 23.600 16.900 7.310 3.250 3.750 6.630 16.400 11.500 12.300 HQ 8.450 7.900 13.400 115.000 52.900 46.200 16.000 6.140 5.260 8.730 102.000 20.600 115.000 LQ 7.260 5.940 6.380 21.000 13.800 3.300 2.240 2.120 2.730 5.040 5.480 9.000 2.120 AQ 7.770 6.500 14.400 36.000 27.300 7.920 2.640 2.480 4.880 8.770 10.700 20.700 12.500 HQ 8.570 7.700 40.800 93.600 41.400 14.600 3.630 2.730 8.450 25.100 18.100 84.600 93.600 LQ 13.800 12.700 19.800 19.800 21.000 5.500 7.700 3.630 3.790 6.160 6.380 5.720 3.630 AQ 23.400 24.600 25.600 52.800 35.200 11.200 14.000 5.670 5.260 6.950 7.310 6.710 18.200 HQ 52.900 163.000 37.300 125.000 50.200 20.200 53.100 10.900 8.180 7.700 7.990 8.860 163.000 LQ 7.990 11.200 10.000 21.500 41.300 6.360 3.300 4.600 13.800 7.900 7.080 9.550 3.300 AQ 12.900 13.100 14.100 44.000 58.300 18.700 4.370 11.600 18.900 12.900 8.860 20.700 19.900 HQ 37.000 26.000 23.900 97.400 139.000 49.800 6.140 26.200 34.300 19.300 19.300 77.600 139.000 LQ 11.100 11.800 12.700 30.600 24.600 3.630 2.610 2.610 6.360 12.700 10.200 24.600 2.610 AQ 19.600 31.000 24.100 56.800 50.600 10.500 3.360 3.550 14.800 16.300 46.600 50.800 27.300 HQ 62.300 213.000 131.000 111.000 77.600 23.600 4.280 4.600 45.500 20.600 257.000 137.000 257.000 LQ 17.200 13.100 14.500 15.700 36.100 6.580 3.140 4.820 4.280 5.920 9.000 12.700 3.140 AQ 41.100 16.900 21.400 27.600 59.300 19.200 3.860 6.740 5.620 9.390 13.700 27.000 21.100 HQ 123.000 52.900 146.000 90.000 110.000 34.900 5.700 10.500 7.350 18.900 31.800 226.000 226.000 LQ 9.280 9.550 9.000 9.000 - - - - - - - - - AQ 11.800 17.600 13.700 42.100 - - - - - - - - - HQ 15.700 36.100 46.900 186.000 - - - - - - - - - LQ AQ HQ

4. THERMOELECTRIC POWER PLANT WATER BALANCE Considering the limited water resources, closed system of water supply with cooling towers is applied in all constructed and planned thermo electric power plants. Balance line in closed system with cooling tower ( Fig.2.) is different from the open system. The circulation pumps (5) push the cooled water toward condenser (1), coolers (2) and (3) and bearings (4). The water from the cooler and bearing ( except the certain amount of dirty water from bearings which is sent to be used in the transport of slag and ash) was pushed back and mixed with cooled water from the cooling tower (9) and added fresh water (10) from the accumulation lake Gazivode, in front of circulation pumps (5), and goes back in the system. One part of fresh water from the lake is sent in the preparation plant (7) for the mass loss compensation in the cycle. After the condenser (1), some amount of water is driven for the desalinization (11) and sometimes into slag and ash transport plant (8), while the rest of the water are pushed for cooling into cooling tower (9), in which the part of water is lost in the process of evaporization and in the air flow through the mouth of tower. Water balance in the transportation of slag and ash (8) is the same as in open water supply system. Fig.2. Scheme of water balance in condensation thermoelectric power plant for closed system of water supply with cooling tower 1. Condenser; 2. Oil coolers; 3.Gas and air coolers; 4. Bearings; 5. Circulation pump; 6. Additional pumps; 7. water preparation plant; 8. Hydraulic slag and ash transportation system; 9. Cooling tower; 10. Pump for added water; 11. Desalinization.

In Table 7. there were presented the records about the water loss in the water supply system. The relative losses are given for Δt cw = 10 o C. For other values of the temperature differences of cooling water Δt cw, the listed losses should be multiplied by Δt cw / Δt cw. The water losses are increased because of evaporisation or decreased for 0,2 for each 10 o C of temperature change for water or air. Table 7. Water loss in water supply system Title flow loss through condensation (%) Evaporization in pools of the spraying devices and cooling towers for t cw = 20 o 1,4 C Additional evaporization in accumulation for t cw = 20 o C 1,1 Outlet with air and wind from the cooling tower - with droplets separator 0,05 - without droplets separator 0,5 Outlet with air from the pool for the spraying device 1,5 2,0 Desalinization of the circulation system 0,5 1,0 5. DETERMINATION OF THE WATER QUANTITIES FOR THE LOSS COMPENSATION IN THE SYSTEM OF WATER SUPPLY AND PLANNED THERMOELECTRIC POWER PLANT - Total needs for cooling water D cw 10 m dc Pt 3600 10 3 3 3 m 77,8 s d c 2 kg/kwh - specific vapour consumption through condenser (this value was determined by reduction of 30% for regeneration heating of condensate and inflow water from the specific vapour consumption of modern turbine d = 3 kg/kwh) m = 40 60 kg/kg - cooling number. The ration of the cooling water flow and vapour flow, m = 50 kg/kg is assumed P t = 2778 MW - total power entering of the planned thermoelectric power plants Water quantity requested for loss compensation in the water supply system D cw D cw m 0,04 3,12 s 3

6. CONCLUSION Based on the available water resources in this area, for the planned development of energetic it can be concluded: 1. Water resource of the river Ibar with accumulation Gazivode enables limited development of energetic in Northern Kosovo. The estimation showed that this water system has reserves only for future expansion of thermoelectric power plant Kosovo B. 2. The construction of new thermoelectric plants is possible only if they are going to be located on the very north of Kosovo (Zvecan, Leposavic). 3. The realistic development of energetic should be expected in Northern Metohija because its coal and water resources are not yet exploited. REFERENCES [1] Андрющенко А. И.: Основы термодинамики циклов тепло энергетические установок, Москва, Высшая школа, 1985. [2] Brkid Lj., Živanovid., Tucakovid D.: Termoelektrane, Univerzitet u Beogradu, Mašinski fakultet Beograd, 2006. [3] Елизаров Д. П.: Тепло-энергетические установки электростанций, Моска, Энергоиздат, 1982. [4] Jakovljevid I., Petrovid Lj.: Ograničenja i konflikti razvoja eksploatacije lignita na Kosovu i Metohiji sa aspekta zaštite životne sredine, Univerzitet u Prištini, Fakultet tehničkih nauku Kosovska Mitrovica, I okrugli sto zaštita životne sredine u industrijskim područjima, Kosovska Mitrovica [5] Kalaba D.: Prilog metodi određivanja raspoloživosti postrojenja parne turbine vede snage koja se ne nalazi u eksploataciji u zavisnosti od tehničkih rešenja, Vojno-tehnički glasnik, Beograd, br. 5. 1987. [6] Milentijevid, G.: Podzemne vode severnog dela Kosova i Metohije iskorišdavanje i zaštita, Doktorska disertacija, Rudarsko-geološki fakultet, Beograd, 2005.- pp 160 [7] Milentijevid, G., Nedeljkovid, B., Djokid, J.: Assessement of the mining practices effects on the water quality in the Ibar river withen the Leposavid municipality, Journal of the Geographical Institute Jovan Cvijid SASA; No 1; (2010), pp. 31-46, ISSN: 1821-2808.