A Macroscopic Tool for Measuring Delay Performance in the National Airspace System. Yu Zhang Nagesh Nayak

Similar documents
Operational Performance and Demand Management. Mark Hansen NEXTOR Short Course 10/14/04

I R UNDERGRADUATE REPORT. National Aviation System Congestion Management. by Sahand Karimi Advisor: UG

Estimation of the Impact of Single Airport and Multi-Airport System Delay on the National Airspace System using Multivariate Simultaneous Models

Project: Implications of Congestion for the Configuration of Airport Networks and Airline Networks (AirNets)

Approximate Network Delays Model

An Econometric Study of Flight Delay Causes at O Hare International Airport Nathan Daniel Boettcher, Dr. Don Thompson*

Briefing on AirNets Project

Validation of Runway Capacity Models

Congestion. Vikrant Vaze Prof. Cynthia Barnhart. Department of Civil and Environmental Engineering Massachusetts Institute of Technology

PLANNING A RESILIENT AND SCALABLE AIR TRANSPORTATION SYSTEM IN A CLIMATE-IMPACTED FUTURE

Airport Capacity, Airport Delay, and Airline Service Supply: The Case of DFW

NAS Performance Models. Michael Ball Yung Nguyen Ravi Sankararaman Paul Schonfeld Luo Ying University of Maryland

Estimating Domestic U.S. Airline Cost of Delay based on European Model

1 Replication of Gerardi and Shapiro (2009)

Analysis of ATM Performance during Equipment Outages

Estimating Sources of Temporal Deviations from Flight Plans

Predicting Flight Delays Using Data Mining Techniques

ESTIMATING CAPACITY REQUIREMENTS FOR AIR TRANSPORTATION SYSTEM DESIGN

Fewer air traffic delays in the summer of 2001

Quantile Regression Based Estimation of Statistical Contingency Fuel. Lei Kang, Mark Hansen June 29, 2017

IAB / AIC Joint Meeting, November 4, Douglas Fearing Vikrant Vaze

Abstract. Introduction

Modeling Flight Delay Propagation: A New Analytical- Econometric Approach

Deconstructing Delay:

Inter-modal Substitution (IMS) in Airline Collaborative Decision Making

Overview of Congestion Management Issues and Alternatives

Measuring Airline Networks

Discriminate Analysis of Synthetic Vision System Equivalent Safety Metric 4 (SVS-ESM-4)

Managing And Understand The Impact Of Of The Air Air Traffic System: United Airline s Perspective

Active ATM Performance Management

Airspace Complexity Measurement: An Air Traffic Control Simulation Analysis

Coordination, Matchmaking, And Resource Allocation For Large-scale Distributed Systems

Aircraft Arrival Sequencing: Creating order from disorder

Performance monitoring report for 2014/15

Modeling Flight Delay Propagation: A New Analytical- Econometric Approach

11. Design and Justification for Market-Based Approaches to Airport Congestion Management: The U.S. Experience

PRESENTATION OVERVIEW

Air Transportation Infrastructure and Technology: Do We have Enough and Is this the Problem?

Congestion Management Alternatives: a Toolbox Approach

Appendix B Ultimate Airport Capacity and Delay Simulation Modeling Analysis

Washington Dulles International Airport (IAD) Aircraft Noise Contour Map Update

Impact of Landing Fee Policy on Airlines Service Decisions, Financial Performance and Airport Congestion

1) Complete the Queuing Diagram by filling in the sequence of departing flights. The grey cells represent the departure slot (10 pts)

Predicting a Dramatic Contraction in the 10-Year Passenger Demand

The Combination of Flight Count and Control Time as a New Metric of Air Traffic Control Activity

Department of Transportation, Federal Aviation Administration (FAA). SUMMARY: Under this notice, the FAA announces the submission deadline of

Application of TOPAZ and Other Statistical Methods to Proposed USA ConOps for Reduced Wake Vortex Separation

Free Flight En Route Metrics. Mike Bennett The CNA Corporation

Air Transportation Systems Engineering Delay Analysis Workbook

Analysis of Air Transportation Systems. Airport Capacity

Integrated Optimization of Arrival, Departure, and Surface Operations

Operating Limitations At John F. Kennedy International Airport. SUMMARY: This action amends the Order Limiting Operations at John F.

Future Network Manager Methods

Demand Forecast Uncertainty

Modelling Airline Network Routing and Scheduling under Airport Capacity Constraints

Depeaking Optimization of Air Traffic Systems

OPERATING LIMITATIONS AT NEW YORK LAGUARDIA AIRPORT. SUMMARY: This action extends the Order Limiting Operations at New York LaGuardia

Propagation of Delays in the National Airspace System

ESD Working Paper Series

Fuel Burn Impacts of Taxi-out Delay and their Implications for Gate-hold Benefits

Semantic Representation and Scale-up of Integrated Air Traffic Management Data

3. Aviation Activity Forecasts

Cross-sectional time-series analysis of airspace capacity in Europe

Looking for the Capacity in NGATS

A RECURSION EVENT-DRIVEN MODEL TO SOLVE THE SINGLE AIRPORT GROUND-HOLDING PROBLEM

A Model to Assess the Mobility of the National Airspace System (NAS).

Predictability in Air Traffic Management

Analysis of Aircraft Separations and Collision Risk Modeling

Temporal Deviations from Flight Plans:

NOTES ON COST AND COST ESTIMATION by D. Gillen

AIRLINES MAINTENANCE COST ANALYSIS USING SYSTEM DYNAMICS MODELING

Airline Operations A Return to Previous Levels?

Schedule Compression by Fair Allocation Methods

ATM Seminar 2015 OPTIMIZING INTEGRATED ARRIVAL, DEPARTURE AND SURFACE OPERATIONS UNDER UNCERTAINTY. Wednesday, June 24 nd 2015

Combining Control by CTA and Dynamic En Route Speed Adjustment to Improve Ground Delay Program Performance

Wake Turbulence Research Modeling

Federal Aviation Administration Portfolio for Safety Research and Development. Seminar Paul Krois October, 2008

Traffic Flow Management

An Analysis of the Impacts of Wake Vortex Restrictions at LGA

Use of Performance Metrics in Airspace Systems: US Perspective

Airline Response to Changing Economics and Policy

Time Benefits of Free-Flight for a Commercial Aircraft

Quantification of Benefits of Aviation Weather

Simulating Airport Delays and Implications for Demand Management

System Oriented Runway Management: A Research Update

LONG BEACH, CALIFORNIA

NAS Performance and Passenger Delay

Directional Price Discrimination. in the U.S. Airline Industry

Analyzing & Implementing Delayed Deceleration Approaches

Big Data Processing using Parallelism Techniques Shazia Zaman MSDS 7333 Quantifying the World, 4/20/2017

Towards New Metrics Assessing Air Traffic Network Interactions

CHAPTER 4 DEMAND/CAPACITY ANALYSIS

Measuring Ground Delay Program Effectiveness Using the Rate Control Index. March 29, 2000

TravelWise Travel wisely. Travel safely.

GAO REAGAN NATIONAL AIRPORT. Update on Capacity to Handle Additional Flights and Impact on Other Area Airports. Report to Congressional Requesters

REVIEW OF THE STATE EXECUTIVE AIRCRAFT POOL

APPENDIX D MSP Airfield Simulation Analysis

Capacity Constraints and the Dynamics of Transition in the US Air Transportation

Estimating Avoidable Delay in the NAS

CANSO Workshop on Operational Performance. LATCAR, 2016 John Gulding Manager, ATO Performance Analysis Federal Aviation Administration

Transcription:

A Macroscopic Tool for Measuring Delay Performance in the National Airspace System Yu Zhang Nagesh Nayak

Introduction US air transportation demand has increased since the advent of 20 th Century The Geographical extent of the country makes air transportation a viable option About 70% of airline operations are served by 35 OEP airports NextGen intends to reduce total flight delay by 30-40 percent by 2018 when compared to do-nothing scenario The FAA Capital Investment Plan (CIP) intended to invest about $16.6 billion as of April 2009 for airport related projects From planning and policy point of view we need tools to test the system-wide effects of these investment and provide guidance for further investment 2

Operational Evolution Partnership (OEP) Airports Source: Federal Aviation Administration (faa.gov) 3

Methodology Estimate the interaction of flight delay at one single airport and delay of the rest of the National Airspace System (NAS) Predict system-wide impact of capacity improvement or demand management strategies at a single airport Case study: LaGuardia International Airport (LGA) Chicago O Hare International Airport (ORD) 4

SYSTEM-WIDE BENEFIT OF CAPACITY EXPNSION OF INDIVIDUAL AIRPORT Capacity LGA/ORD AAR Queuing Delay LGA/ORD Convective weather IMC Regression Estimates Baseline Observed Delay at LGA/ORD Predicted Arrival Delay at LGA/ORD Single Airport Percentage Change of Arrival Delay at LGA/ORD Total Operations (Arrivals) at NAS Convective Weather Regression Estimates Baseline Observed Delay at NAS Predicted NAS Arrival Delay Percentage Change of Arrival Delay at NAS System

LITERATURE REVIEW Beatty et al. developed the concept of a delay multiplier to understand the effect of initial flight delay on an airline s operating schedule. Their research concludes that the existence of a delay multiplier is due to the branching nature of crew and aircraft sequences. Schaefer and Millner show that the delay augments with increasing duration of IMC at the airport, while the propagation effect for the first leg was significant but diminished after each subsequent leg Schaefer et al. and Ahmad Beygi et al. analyzed the importance of schedule parameters on delay propagation in the NAS The model by Laskey et al. takes into consideration the dynamic aspects of flight delay, such as weather effects, wind speed, flight cancellations, and others, to estimate delay propagation in the NAS. Hansen and Zhang devised a macroscopic technique to study the delay propagation in the NAS. 6

Causal Factors for Delay at Individual Airport - Average Arrival Deterministic Queuing Delay - Average Observed Arrival delay at other airports - Adverse Weather Daily IMC Ratio Weather Index of different regions - Passenger Load Factor - Demand Management Strategies at different airports - Seasonal Dummy Variables 7

Causal Factors for Delay at National Airspace System - Average Arrival Deterministic Queuing Delay - Average Observed Arrival delay at individual airport - Adverse Weather Weather Index of different regions - Demand Management Strategies at different airports - Seasonal Dummy Variables - Total operations of system 8

Correlation between Average Observed Arrival and Departure Delay National Airspace System Arrival Departure Arrival 1 0.98647 Departure 0.98647 1 ORD Arrival Departure Arrival 1 0.94538 Departure 0.94538 1 9

W k (t) LQ(t) LF(t) D (t) A Interactions between a Single Airport and the Rest of the NAS I (t) L ν(t) D (t ) A Dˆ S ( t ) LQ (t ) SQ(t) LF(t) Average observed arrival delay against schedule at LGA/ORD Average observed arrival delay against schedule at NAS Average arrival deterministic queuing delay at LGA/ORD Average arrival deterministic queuing delay of system Passenger Load Factor S i (t) I (t) L OP (t) Daily IMC ratio recorded at LGA/ORD Total operations (arrivals) of system D j (t) SQ(t) Dˆ S ( t) u(t) OP(t) W k (t) S (t ) i D (t) j ν (t), u(t) Weather index of different regions Seasonal dummy variable Demand Management regime dummy variables Stochastic error terms 10

Deterministic Queuing Delay Queuing Diagram of arrivals at ORD 11

Demand Management Regimes at ORD and LGA LGA Airport Slot Control AIR-21 Slottery High- Density Rule Apr 2000 Partial HDR Jan 2001 ORD Airport Slot Control Sep 2001 Post 9/11 Period Jan 2002 Over Scheduling Over Scheduling Jan 2004 FAA reduced AA and UA flights by 5 % Jun 2004 FAA reduced AA and UA flights by 2.5 % 12

1. LGA Airport The HDR period at LGA was characterized by limiting the hourly slots to 68 between 6:00 am and 12:00 midnight Later in 1986, the scheduling committee was replaced by use-it-orlose-it and buy-sell rules By 1997, 30 new entrant exemptions were approved for LGA In April 2000, a demand management strategy called AIR-21 was introduced to eliminate slot control. The terrorist attacks on September 11, 2001, affected airport operations in many ways. Beginning in 2002, air traffic increased each following year, leading to a period of overscheduling, and HDR completely expired by 2007 13

2. ORD Airport The HDR strategy was also applied at ORD in 1968 In the 1990s, 53 new slot exemptions were created at ORD The HDR strategy was gradually reduced at ORD, and its complete elimination took place by 2002 The terrorist attacks on September 11, 2001, affected airport operations Since 2002, there has been a general increase in air traffic, creating a period of overscheduling, with more than 100 daily operations at ORD The FAA negotiating a 5% reduction in American Airlines (AA) and United Airlines (UA) flights in January 2004. The vacated slots were quickly taken up by Northwest Airlines and Independence Air There was further reduction of AA and UA flights in June 2004 by 2.5% to reduce delays 14

Epochs Period LGA Airport ORD Airport January 2000-April 2000 High Density Rule Period High Density Rule Period May 2000-January 2001 AIR - 21 Partial HDR February 2001-September 10,2001 Sep 11,2001 December 2001 Slottery Post 9/11 Period Partial HDR Post 9/11 Period Year 2002 Year 2002 Over Scheduling Year 2003 Year 2003 Over Scheduling January 2004 June 2004 Year 2004 5% Reduction in UA and AA Flights 15

Convective Weather (IL (t)) Adverse Weather Conditions - Daily summary of En-Route Weather Information based on the hourly data - Each observation is a binary variable indicating thunderstorms during the day - The whole country divided into regions of 10º latitude by 10º longitude - Proportion of weather stations in each region reporting thunderstorms is computed IMC Ratio (WK (t)) - Proportion of day in which individual airport or the system is under IMC is calculated - Airports have lower capacity under IMC 16

USA Weather Regions 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 17

Causal Factor for Delay at Individual Airport Passenger Load Factor (LF(t)) - It is an ratio of number of passengers by number of seats available in the aircraft at the airport - Higher passenger load factor leads to longer average daily arrival delay since it causes uncertainty to smooth daily operations. Seasonal Dummy Variable (Sj(t)) - Dummy variables are introduced to indicate seasons 18

Causal Factor for Delay in the NAS Total Flight Operations (OP(t)) - The total flight operations to all 32 benchmark airports are included - This variable captures effects of traffic volume not reflected in other variables - It also captures the incidence of congestion at the airport Seasonal Dummy Variable (Sj(t)) - Dummy variables are introduced to indicate seasons 19

Multivariate Model of LGA/ORD and NAS Delay Model 1 (Delay at LGA or ORD) ) ( ) ( ) ( ) ( 2 ) ( 6 ) ( 5 ) ( 4 ) ( 2 3 ) ( 2 ) ( ˆ 1 ) ( t t j D j jl t i S i il k t k W kl t L I t L I t LF t LQ t LQ t S D t DA ν θ ω λ β β β β β β α + + + + + + + + + = Model 1 (Delay at rest of OEP Airports) ) ( ) ( ) ( ) ( ) ( ) ( ˆ ) ( ) ( 3 2 1 t u t D t S t W SQ t t D t OP t D n n ns m m ms l l ls A S S + + + + + + = + θ ω λ γ γ γ α 20

Two Stage Least Square Estimates for LGA/ORD LQ(t) LF(t) I (t) L D (t) A Dˆ ( t) S Average observed arrival delay against schedule at LGA/ORD Average observed arrival delay against schedule at NAS Pred_ D ˆ ( t) S Predicted average arrival delay against schedule at NAS W k (t) D (t) A ν(t) LQ(t) SQ(t) Average arrival deterministic queuing delay at LGA/ORD Average arrival deterministic queuing delay of system LF(t) Passenger Load Factor S i (t) D j (t) SQ(t) Dˆ S ( t) Pred_ Dˆ ( t) S u(t) OP(t) I (t) L OP(t) W k (t) S (t ) i D (t) j ν (t), u(t) Daily IMC ratio recorded at LGA/ORD Total operations (arrivals) of system Weather index of different regions Seasonal dummy variable Demand Management regime dummy variables Stochastic error terms 21

Two Stage Least Square Estimates for NAS W k (t) LQ(t) LF(t) D (t) A Pred_ D (t ) A I (t) L ν(t) D (t) A Dˆ ( t) S Pred_ D LQ(t) SQ(t) LF(t) (t ) A Average observed arrival delay against schedule at LGA/ORD Average observed arrival delay against schedule at NAS Predicted average arrival delay against schedule at LGA/ORD Average arrival deterministic queuing delay at LGA/ORD Average arrival deterministic queuing delay of system Passenger Load Factor S i (t) D j (t) Dˆ S ( t) u(t) I (t) L OP(t) W k (t) S (t ) i D (t) j Daily IMC ratio recorded at LGA/ORD Total operations (arrivals) of system Weather index of different regions Seasonal dummy variable Demand Management regime dummy variables SQ(t) OP(t) ν(t), u(t) Stochastic error terms 22

Regression Results of Arrival Delay at LGA and ORD LGA ORD Variable Estimate SE P-Value Estimate SE P-Value LQ(t) LQ 2 ( t ) Dˆ ( t) S I (t) L I (t) 2 L LF(t) W k (t) Average Queuing Delay 0.2346 0.02 <0.0001 1.2701 0.05 <0.0001 Quadratic Average Queuing Delay -0.00008 0.00 <0.0001-0.0071 0.00 <0.0001 Observed Arrival Delay for NAS 0.9459 0.08 <0.0001 0.5526 0.11 <0.0001 IMC Ratio (Proportion of days operated in IMC conditions) 24.9004 2.68 <0.0001 21.7167 3.41 <0.0001 Square of IMC Ratio -9.5675 2.82 0.0007-9.4139 3.73 0.0115 Passenger Load Factor 0.0752 0.02 0.0013 0.0197 0.03 0.4731 Thunderstorm Ratio (number of stations reported thunderstorm/ total amount of stations in region) Region 11 45.2798 3.64 <0.0001 Region 12 44.1439 3.64 <0.0001 Region 13 11.7753 2.79 <0.0001 23

LGA Variable Estimate SE P-Value ORD Estimate SE P-Value S (t) i D (t) j Seasonal Dummy Variables Dummy Variables for Demand Management Regimes Quarter 1-3.8319 0.79 <0.0001-1.5393 1.35 0.2537 Quarter 2-8.5673 0.96 <0.0001-4.6217 1.51 0.0022 Quarter 3-6.4886 0.96 <0.0001-3.3532 1.50 0.0252 AIR-21 5.1217 1.12 <0.0001 Slottery -1.2266 1.17 0.2942 Partial HDR 0.2311 2.04 0.9271 Post 9/11 Period -10.0503 2.09 <0.0001-7.1603 2.53 0.0047 Year 2002-3.0325 1.14 0.0079 Year 2003-3.4804 1.024 0.0007 Year 2004-6.1013 1.216 <0.0001 Over Scheduling -3.8908 1.87 0.0374 5% Reduction in UA and AA 2.2639 1.93 <0.2405 R-Square 0.7741 0.8242 24

Decomposition of LGA Delay by Causes 25

Decomposition of ORD Delay by Causes 26

Estimation Results of NAS Delay LGA Variable Estimate SE P-Value ORD Estimate SE P-Value SQ(t) ˆ D A ( t) OP(t) (t) W l Average Queuing Delay 1.1761 0.04 <0.0001 0.9627 0.05 <0.0001 Observed Arrival Delay at LGA/ORD 0.0824 0.01 <0.0001 0.0519 0.00 <0.0001 Total Operations (arrivals) in the system Thunderstorm Ratio 0.000167 0.00 <0.0001 0.000214 0.00 <0.0001 Region 04 4.0102 0.95 <0.0001 6.5106 0.94 <0.0001 Region 05 4.8631 0.79 <0.0001 5.3448 0.78 <0.0001 Region 06 5.0562 0.61 <0.0001 3.6226 0.58 <0.0001 Region 11 2.4948 1.27 0.0493 11.682 1.10 <0.0001 Region 12 11.5718 0.92 <0.0001 5.6247 1.12 <0.0001 27

LGA Variable Estimate SE P-Value ORD Estimate SE P-Value S m (t) Seasonal Dummy Variables Quarter 1 0.666 0.47 0.1577 0.2421 0.48 0.6123 Quarter 2-2.6564 0.49 <0.0001-3.2748 0.52 <0.0001 Quarter 3-3.163 0.51 <0.0001-3.8022 0.53 <0.0001 D n (t) Dummy Variables for Demand Management Regimes AIR-21 2.0861 0.61 0.0007 Slottery 0.8647 0.61 0.1578 Partial HDR 1.4466 0.57 0.0111 Post 9/11 Period -0.1757 0.78 0.8207-0.795 0.83 0.3396 Year 2002-0.6509 0.56 0.2416 Year 2003-0.7681 0.56 0.1701 Year 2004 0.2629 0.63 0.6773 Over Scheduling -1.0949 0.53 0.0383 5% Reduction in UA and AA -1.3761 0.67 0.0411 R-Square 0.9435 0.9406 28

Decomposition of NAS Delay considering LGA by Causes 29

Decomposition of NAS Delay considering ORD by Causes 30

SYSTEM-WIDE BENEFIT OF CAPACITY EXPNSION OF INDIVIDUAL AIRPORT Capacity LGA/ORD AAR Queuing Delay LGA/ORD Convective weather IMC Regression Estimates Baseline Observed Delay at LGA/ORD Predicted Arrival Delay at LGA/ORD Single Airport Percentage Change of Arrival Delay at LGA/ORD Total Operations (Arrivals) at NAS Convective Weather Regression Estimates Baseline Observed Delay at NAS Predicted NAS Arrival Delay Percentage Change of Arrival Delay at NAS System 31

Single Airport Arrival Delay System Arrival Delay Baseline Queuing Delay Weather IFR ratio 10% capacity increase (AAR) Queuing Delay Weather IFR ratio Baseline Airport Observed Delay Weather Total Operations After increase in airport capacity (S2 ) Airport Observed Delay with Increased Capacity Weather Others Others Total Operations Percent Reduction in Airport Delay = O1 O2 *100 O1 Percent Reduction in NAS Delay = S1 S2 *100 S1 32

LGA Scenario Analysis Baseline 10% Capacity Increase 20% Capacity Increase 30% Capacity Increase (1) (2) (3) (4) LGA Delay (mins) 53.18 52.21 50.56 48.98 Percent Reduction at LGA Base 1.83 % 4.93 % 7.90 % NAS Delay (mins) 6.44 6.36 6.21 6.06 Percent Reduction at NAS Base 1.36 % 2.34 % 2.29 % 33

ORD Scenario Analysis Baseline 10% Capacity Increase 20% Capacity Increase 30% Capacity Increase (1) (2) (3) (4) ORD Delay (mins) 18.64 11.48 8.84 7.77 Percent Reduction at ORD Base 38.48 % 52.60 % 58.31 % NAS Delay (mins) 8.39 8.02 7.89 7.83 Percent Reduction at NAS Base 4.40 % 6.02 % 6.67 % 34

Conclusion One-minute delay at other airports cause increase of 0.946 minute and 0.553 minute delays at LGA and ORD, respectively Region 11 (Northeastern part of the U.S.) is a major problem for LGA; similarly, Regions 12 and 13, (Uppermiddle regions of the U.S.) are problems for ORD. The summer seasonal effect shows the least amount of delay when compared to other seasons The lowest delay was reached post-9/11 Delay in the system and passenger load are the major factors affecting average arrival delay at LGA. 35

Average arrival queuing delay and delay in the system are the major contributing factors for the average arrival delay at ORD Capacity improvements at ORD show more system-wide impact than capacity improvements at LGA. A one-minute increase of delay at LGA causes a 0.082- minute increase in average delay in the NAS, while a one-minute delay at ORD causes a 0.052-minute average delay in the NAS 36

Future Work Refine the specification of the multivariate models Using more current data From single airport to regional airport system Build a multiple-equation model and apply 3SLS to estimate the parameters 37

Three Stage Least Squares Combination of Two Stage Least Squares (2SLS) method with Seemingly Unrelated Regression (SUR) SUR is a technique to analyze multiple equations with - Cross Equations Parameter Restrictions - Correlated Error Terms In the first step of 2SLS each endogenous covariate is regressed on all exogenous variable in the model. In the second stage of 2SLS the predicted value obtained from the first stage is regressed on the exogenous variables in the model Ultimately SUR is used for correlated error terms in the model. 38

Interactions between a Single Airport and rest of the NAS 39

Questions? Comments? Thanks! Nagesh Nayak Ph.D. Student, Civil and Environmental Engineering University of South Florida (USF) 4202 E. Fowler Ave. ENC 3300 Tampa, FL 33620 Tel: 813-230-4421 Fax: 813-974-2957 Email: nnayak@mail.usf.edu URL: http://cee.eng.usf.edu/ 40