Environmental Performance Evaluation of Ro-Ro Passenger Ferry Transportation

Similar documents
New Method for Environmental Performance Evaluation of Ro-Ro Passenger Ships

Analysis of technical data of Ro-Ro ships

Hans Otto Kristensen. Consulting Naval Architect Phone: Mail: Evaluation of CO 2 emissions from cruise ships

MARINE CIRCULAR MC-1/2013/1

Effect of ship structure and size on grounding and collision damage distributions

VINTERSJÖFARTSFORSKNING. TRAFFIC RESTRICTIONS TO FINNISH AND SWEDISH PORTS Setting the Restrictions based on Ice Thickness and Distance Sailed in Ice

Technical Information

IMO INF PAPER SUMMARY - RESPONSE TIME DATA FOR LARGE PASSENGER FERRIES AND CRUISE SHIPS

180.8 million passengers, nearly 17.7 million cars and 3.3 million cargo units. Every year 6.4 million passengers travel on Viking Line s vessels.

Coastal vessels The number of insurance accidents and accident rate fluctuation 8.0%

REVIEW OF THE RECOMMENDATIONS ON EVACUATION ANALYSIS FOR NEW AND EXISTING PASSENGER SHIPS

Propulsion Trends in Container Vessels

TARIFF OF HARBOUR DUES

Controlled Cooking Test (CCT)

ALL SHIPOWNERS, OPERATORS, MASTERS AND OFFICERS OF MERCHANT SHIPS, AND RECOGNIZED ORGANIZATIONS

A Study on Berth Maneuvering Using Ship Handling Simulator

Status and way forward for LNG as a maritime fuel

ScienceDirect. Prediction of Commercial Aircraft Price using the COC & Aircraft Design Factors

Reporting Instructions FILING REQUIREMENTS

HOW TO IMPROVE HIGH-FREQUENCY BUS SERVICE RELIABILITY THROUGH SCHEDULING

Residential Property Price Index

METROBUS SERVICE GUIDELINES

Fuel Conservation Reserve Fuel Optimization

SEA SHIPPING EMISSIONS 2012: NETHERLANDS CONTINENTAL SHELF, 12-MILE ZONE, PORT AREAS AND OSPAR REGION II

EMERGENCY TOWING CAPABILITIES IN LITHUANIA. Igor Kuzmenko Lietuvos maritime academy

CHAPTER 4: PERFORMANCE

The Polar Code and the Canadian Arctic

Produced by: Destination Research Sergi Jarques, Director

UC Berkeley Working Papers

PERFORMANCE MEASUREMENT: THE CASE OF DURRES PORT ABSTRACT

Residential Property Price Index

Annual & Hourly Cost Detail

Annual General Meeting. 13 June 2017

Key Performance Indicators

Port dues and charges Free port of Ventspils

AVIATION ENVIRONMENT CIRCULAR 2 OF 2013

Online Case. Practice case. Slides HTS de préparation - fev 2016_rev HC.pptx Draft for discussion only

Analysing the performance of New Zealand universities in the 2010 Academic Ranking of World Universities. Tertiary education occasional paper 2010/07

Measure 67: Intermodality for people First page:

Report on shipping accidents in the Baltic Sea area during 2010

IMO / ILO REQUIREMENTS FROM 2014

Propulsion Trends in Container Vessels

MINISTRY OF INFRASTRUCTURES AND TRANSPORT HARBOUR MASTER S OFFICE OF RAVENNA ORDER NO. 97/2017

ANA Traffic Growth Incentives Program Terms and Conditions

Baltic Marine Environment Protection Commission

MARPOL Consolidated Edition 2017

Statistics of Air, Water, and Land Transport Statistics of Air, Water, and Land. Transport Released Date: August 2015

Developing an Aircraft Weight Database for AEDT

Content. Study Results. Next Steps. Background

For Immediate Release September 3, CONSTRUCTION BEGINS ON NEW CABLE FERRY Special steel cutting ceremony held at shipyard

GAMA/Build A Plane 2017 Aviation Design Challenge

Appendix B Ultimate Airport Capacity and Delay Simulation Modeling Analysis

Annual & Hourly Cost Detail

Restructuring of advanced instruction and training programs in order to increase the number of flight hours for military pilots.

DFDS A/S H Analyst meeting 30 August 2006

Special Conditions: CFM International, LEAP-1A and -1C Engine Models; Incorporation

Produced by: Destination Research Sergi Jarques, Director

ANA Traffic Growth Incentives Programme Terms and Conditions

Produced by: Destination Research Sergi Jarques, Director

Produced by: Destination Research Sergi Jarques, Director

Cost Cutting for Success: Factors Influencing Costs

G. Glukhov The State Scientific Research Institute of Civil Aviation, Mikhalkovskaya Street, 67, building 1, Moscow, Russia

De luchtvaart in het EU-emissiehandelssysteem. Summary

ENGINEERING AND TECHNICAL CHALLENGES IN LNG CONVERSIONS. 1 Wärtsilä

MARITIM INNOVASJON FOR FREMTIDENS REDERI

Abstract. Introduction

Annual & Hourly Cost Detail

Efficiency and Automation

Quantile Regression Based Estimation of Statistical Contingency Fuel. Lei Kang, Mark Hansen June 29, 2017

Efficiency and Environment KPAs

Commissioned by: Economic Impact of Tourism. Stevenage Results. Produced by: Destination Research

APPLICATION OF THE NO-SPECIAL-FEE SYSTEM IN THE BALTIC SEA AREA

Economic Impact of Tourism. Hertfordshire Results. Commissioned by: Visit Herts. Produced by:

Clustering ferry ports class-i based on the ferry ro-ro tonnages and main dimensions

Falcon 2000S & Challenger 350 Analysis

Aviation Trends. Quarter Contents

CRUISE TABLE OF CONTENTS

Best schedule to utilize the Big Long River

HARBOUR DUES. The Port of Helsingborg

Produced by: Destination Research Sergi Jarques, Director

Consideration of Risk Level in Terms of Damage Stability of Old Ship

Produced by: Destination Research Sergi Jarques, Director

ANNEX C. Maximum Aircraft Movement Data and the Calculation of Risk and PSZs: Cork Airport

Annex 2. Ship Generated Waste Analysis

VINTERSJÖFARTSFORSKNING

Economic Impact of Tourism. Norfolk

HEATHROW COMMUNITY NOISE FORUM

THE PERFORMANCE OF DUBLIN AIRPORT:

Economic Impact of Tourism. Cambridgeshire 2010 Results

Unitised Goods Transport via Danish Ports 2004

BHP Billiton Scope 3 emissions

1. Background. 2. Summary and conclusion. 3. Flight efficiency parameters. Stockholm 04 May, 2011

Environmental Assessment. Runway 14 Smart Tracking Approach Gold Coast Airport

An Introduction to the M. V. Marine Svetaeva

460 exp 460EXP - 115

Citation XLS Analysis - Owner & Charter Hour Contributions. Prepared March 31, 2017

Clustering radar tracks to evaluate efficiency indicators Roland Winkler Annette Temme, Christoph Bösel, Rudolf Kruse

The Economic Impact of Tourism Brighton & Hove Prepared by: Tourism South East Research Unit 40 Chamberlayne Road Eastleigh Hampshire SO50 5JH

Recommendations on Consultation and Transparency

The Economic Impact of Tourism Brighton & Hove Prepared by: Tourism South East Research Unit 40 Chamberlayne Road Eastleigh Hampshire SO50 5JH

Transcription:

Environmental Performance Evaluation of Ro-Ro Passenger Ferry Transportation Authors: Hans Otto Holmegaard Kristensen (hohk@mek.dtu.dk) The Technical University of Denmark Constantin Hagemeister. Nordic Yards. Wismar Abstract With increasing focus on the environmental performance of different transport modes (for example trucks, trains, ships and aircraft) it is of utmost importance that the different transport modes are compared on an equal basis so that the environmental impact, defined as energy demand and/or emissions per transport unit, is related to the same unit for the different transport forms. For Ro-Ro passenger ferries it can be difficult to find a suitable common transport unit, as they often transport a mix of cargo, such as passengers, passenger cars, trucks, lorries, busses and other rolling transport units. In this paper a method for determination of a common transport unit for Ro-Ro passenger ships will be described. Ro-Ro Passenger Ships (Fig. 1 and 2) A Ro-Ro passenger ship (often also called a Ro-Ro ferry or even just a ferry) is a passenger ship which can carry more than 12 passengers (a ship carrying less than 12 passengers is by definition a cargo ship) and which has one or more cargo decks for carriage of rolling cargo, such as cars, trucks, lorries and other rolling cargo. The size and capacity of Ro-Ro passenger ships vary considerably with a length ranging from 2 m up to more than 2 m (the largest Ro-Ro passenger ship delivered in 21 has a length of 24 m and an overall Ro-Ro capacity of 55 lane metres). Trafikdage på Aalborg Universitet 211 ISSN 163 9696 1

Fig. 1 12 lane metre Ro-Ro passenger ship (Mette Mols) for 6 passengers Fig. 2 1 lane metre Ro-Ro passenger ship (Pearl Seaways) for 22 passengers Trafikdage på Aalborg Universitet 211 ISSN 163 9696 2

EEDI (Energy Efficiency Design Index) In the International Maritime Organization (IMO) there has been a debate over the last two to three years about the so-called Energy Efficiency Design Index (EEDI) expressing the CO 2 emissions per unit transport work. For most ships the unit for the EEDI will be gram CO 2 per ton deadweight per nautical mile. Originally, this unit was also suggested for Ro-Ro passenger ships. However, this led to a very large scatter in the statistical data of the EEDI in calculations of the Index for a large statistical sample of Ro-Ro passenger ships. One of the reasons for this scatter is the ship design diversity of Ro-Ro passenger ships. Some of the ships carry relatively few passengers and much cargo such as lorries, resulting in a relatively high deadweight, while other Ro-Ro passenger ferries carry many passengers and focus more on service and amusement ( eat, drink and sleep ) for the passengers. Such a concept leads to large passenger spaces (cafeterias, restaurants and cabins) requiring large ships with a relatively low deadweight. In both cases a large amount of volume is needed, which in general is proportional to the gross register tonnage (GT) of the ship. Therefore, IMO has suggested that in the EEDI calculation procedure for Ro-Ro passenger ships, deadweight has to be replaced by GT, so that the unit of the EEDI for Ro-Ro passenger ships is gram CO 2 /GT/nautical mile. Energy Efficiency Operational Index (EEOI) For existing ships, IMO has suggested introducing a so-called Energy Efficiency Operational Indicator. The Marine Environment Protection Committee (MEPC) has agreed to circulate guidelines (MEPC.1 - Circ.684) for voluntary use of the Ship Energy Efficiency Operational Indicator (EEOI). These guidelines can be used to establish a consistent approach to voluntary use of an EEOI, which can be used in the evaluation of a ship s performance with regard to CO 2 emissions. As the amount of CO 2 emitted from a ship is directly related to the consumption of bunker fuel oil, the EEOI can also provide useful information on a ship s performance with regard to fuel efficiency. These EEOI Guidelines present the concept of an indicator for the energy efficiency of a ship in operation, as an expression of efficiency in the form of CO 2 emitted per unit of transport work. As the Guidelines are recommendatory in nature and present a possible use of an operational indicator the shipowners, ship operators and parties concerned are invited to implement either these Guidelines or an equivalent method in their environmental management systems and consider adoption of the principles herein when developing plans for performance monitoring. In its most simple form the Energy Efficiency Operational Indicator is defined as the ratio of mass of CO 2 emitted per unit of transport work: EEOI = Mass of CO 2 / (transport work) Transport Work and Allocation Principle For vessels such as Ro-Ro passenger ships carrying a mixture of passengers (either travelling with their cars or as pure 'foot passengers') and freight some operators may wish to consider as appropriate a kind of weighted average based on the relative distribution of passengers and freight or the use of other parameters or indicators. On a Ro-Ro passenger ship some of the internal volume is occupied for the carriage of rolling cargo as for example trucks/trailers and cars, while other volume is dedicated to carrying passengers, which entails volume for restaurants, cafeterias, corridors, toilets, different types of service rooms, galleys and pantries. Trafikdage på Aalborg Universitet 211 ISSN 163 9696 3

For day and night ferries, cabins, including associated corridors and store rooms for bed linen etc, make up volume solely used for the passengers. The structural part and associated equipment of these volumes contribute to the lightweight of the ship, which together with the deadweight influences the propulsion power and therefore the exhaust gas emissions, including CO 2. As for allocations of the emissions to the different cargo types of a Ro-Ro passenger ship, it could be rational to allocate the emissions relatively to the volume occupied by each cargo type. Calculating the average weight (ship structural weight + cargo) for the different volume types shows that the weight is roughly independent of the volume type, so that a volumetric allocation principle can also be considered as a weight based allocation method. As the power demand is proportional to the ship s total weight (displacement) the method is therefore rational seen from a ship design and hydrodynamic point of view, which is very important to the validity and understanding of the method. The emissions or energy demand per transport unit for each type of cargo must be related to the volume per unit divided by the total occupied volume on the actual trip (see description of the procedure later). Determination of Volumes for the Different Types of Cargo In order to determine the volumes for the different types of cargo carried on a Ro-Ro passenger ship, general arrangement plans for 6 Ro-Ro passenger ships have been analysed and the volumes for the following spaces were determined: Cargo space for rolling cargo Accommodation for restaurants, cafeterias, corridors, toilets etc Accommodation for pantries, galleys, air conditioning rooms and store rooms Accommodation for passenger cabins and associated corridors and store rooms The analysis was carried out as a bachelor thesis work (Hagemeister) at the Technical University of Denmark and Hochschule Bremen - Schiffbau und Meerestechnik. The ferries are considered as quite representative, typical Western European and Scandinavian ferries, built in the period from 1974 to 29 with the following age distribution, resulting in an average age of 16 years: 1974-1989: 17 ships 199-1999: 17 ships 2-29: 26 ships By use of statistical data over 37 years, it is also possible to see if there is a trend towards higher standards, i.e. larger volumes with decreasing age of the ferries. The analysis shows a slightly higher volume per lane metre and per car, which is expected due to larger cars and higher standards with respect to free space on the car deck between the vehicles. As the volume is the product of area and height the area per cargo unit was also determined in the analysis. The results of the area and volume analysis are summarised in Table 1. The area and volume for passengers include both the area for restaurants, cafeterias, corridors and toilets and the area and volume for pantries, galleys, air conditioning rooms and store rooms as the size of these spaces is related directly to the number of passengers to be carried on board. Trafikdage på Aalborg Universitet 211 ISSN 163 9696 4

Table 1 Area and volume equivalents. Unit General Low comfort High comfort m 2 per lane metre 4 - - m 3 per lane metre 24 - - m 2 per car 15 - - m 3 per car 67.5 - - m 2 per unberthed passenger 3.5 - - m 3 per unberthed passenger 1 7 13 m 2 per berthed passenger 4.5 - - m 3 per berthed passenger 13 - - The volumes for each cargo segment are shown in Figures 3 7, based on the bachelor thesis work (Hagemeister). Volume (m³) 6 45 3 15 2-21 Volume = 65.9 x cars + 1327 15 3 45 6 75 9 Car capacity Fig. 3 Volume of cars (Hagemeister). Trafikdage på Aalborg Universitet 211 ISSN 163 9696 5

Volume (m³) 1 8 6 4 2 2-21 Volume = 24.1 x lanemetres 1 2 3 4 Lanemetres Fig. 4 Volume of trucks and lorries (Hagemeister). Volume (m³) 3 High comfort class 24 Low comfort class 18 Volume = 9.2 x passengers 12 a 6 Volume = 5. x passengers 6 12 18 24 3 Passengers Fig. 5 Volume of passenger related accommodation (restaurants, cafeterias, corridors, toilets etc) (Hagemeister). Trafikdage på Aalborg Universitet 211 ISSN 163 9696 6

Volume (m³) 15 12 high comfort low comfort Lineær (high comfort) Lineær (low comfort) 9 Volume = 3.4 x pass. + 5 6 3 Volume = 2.1 x pass. + 145 5 1 15 2 25 3 Passengers Fig. 6 Volume of service accommodation for passengers (pantries, galleys, air conditioning rooms and store rooms) (Hagemeister). Volume (m³) 32 24 16 8 Volume = 13 x berths 5 1 15 2 25 Berths Fig. 7 Volume of passenger cabins and associated corridors and store rooms (Hagemeister). Trafikdage på Aalborg Universitet 211 ISSN 163 9696 7

Allocation Principles After establishing the volume for each separate cargo type, it is now possible to set up the allocation principles. For a specific sailing condition the occupied volume (Vtot) is calculated as follows. The number of utilised lane metres is referred to as lanes, number of cars as cars, passengers as pass, and the number of occupied berths as berths: Vtot = 24 x lanes + 67.5 x cars + 1 (or 7 or 13 as appropriate) x pass + 13 x berths The comfort class of the ship concerned must be judged individually so that the volume per passenger can be evaluated correctly to be either 7, 1 or 13 m 3 per passenger. If the actual emissions, or energy demand per hour, are Q and the speed in knots is denoted by V, the emissions or energy demand per cargo unit per nautical mile for the trip are as follows: Lane metre: Car: Passengers without berth: Berthed passenger: 24 x Q/Vtot/V 67.5 x Q/Vtot/V 1 (or 7 or 13 as appropriate) x Q/Vtot/V [1 (or 7 or 13 as appropriate) + 13]Q/Vtot/V The actual occupied volume is used instead of the maximum volume with a utilisation of 1 %. If the maximum volume is used not all the emissions or energy demand will be allocated for the trip concerned, which is incorrect as all emissions have to be distributed on the actual cargo including passengers. Total Volume of Ro-Ro Passenger Ships Using ferry data from the ShipPax database (ShipPax), the total cargo volumes for a large number of ferries have been calculated, i.e. Vtot has been calculated assuming a utilisation of 1 %. The result of this analysis is shown in Fig. 8, where it is seen that the total volume is proportional to the length between pp in a higher order than one. It should also be noted that the scatter is relatively high up to a length of approximately 15 m. Above this length the scatter is reduced, probably because the Ro-Ro passenger ships become a bit more homogenous and similar in their lay-out. CO2 Emissions per m 3 per Nautical Mile at a 1 % Cargo Utilisation Using the data in the ShipPax database it has also been possible to calculate the CO 2 emissions per m 3 per nautical mile for the same ferries as shown in Fig. 8. The results of these calculations are given in Fig. 9. Due to the before-mentioned scatter of the total volume up to a length of approximately 15 m there is a similar scatter of the CO 2 emissions in the same range of length between pp. Another factor contributing to the scatter is the scatter in service speed, which is seen from Fig. 1. Trafikdage på Aalborg Universitet 211 ISSN 163 9696 8

125 1 Total volume (m 3 ) 75 5 25 3 7 11 15 19 23 Length pp (m) Fig. 8 Total volume for rolling cargo and passengers of Ro-Ro passenger ships (ShipPax 211). 3 24 gram CO2/m 3 /nm 18 12 6 4 8 12 16 2 24 Length pp (m) Fig. 9 CO 2 emissions per m 3 per nautical mile of Ro-Ro passenger ships (ShipPax 211). Trafikdage på Aalborg Universitet 211 ISSN 163 9696 9

32 28 Service speed (knots) 24 2 16 12 8 3 7 11 15 19 23 Length pp (m) Fig. 1 Service speed of Ro-Ro passenger ships (ShipPax 211). Comparison of CO2 Emissions per t Payload on Ro-Ro Ship and on Road It is seen from Fig. 9 that the average CO 2 emissions for Ro-Ro passenger ships are roughly 1 g/m 3 /nautical mile with a 1 % utilisation of the ship. The average CO 2 emissions per lane metre are therefore 24 x 1 = 24 g/lm/nautical mile = 24/1.852 = 13 g/lm/km. For Ro-Ro cargo ships operating at a normal service speed (Fig. 11) the corresponding figure is approximately 15 g/lm/nautical mile = 8 g/lm/km, depending on the ship s size, according to Fig. 12. For a 15 m long truck carrying 3 t cargo the average CO 2 emission is approximately 7 g/lm/km. By assuming that the same truck is transported (with a load of 3/15 = 2 t/lane metre) on a Ro-Ro passenger ship and a Ro-Ro cargo ship, the following specific CO 2 emissions are obtained: Ro-Ro passenger ship: 13/2 = 65 g/t/km Ro-Ro cargo ship: 8/2 = 4 g/t/km Truck: 7/2 = 35 g/t/km Fig. 13 shows a comparison of CO 2 emissions per lane metre per nautical mile for Ro-Ro passenger ships and Ro-Ro cargo ships. Trafikdage på Aalborg Universitet 211 ISSN 163 9696 1

26 22 Service speed (knots) 18 14 1 8 1 12 14 16 18 2 Length pp (m) Fig. 11 Service speed of Ro-Ro cargo ships (ShipPax 211). 3 CO2 emissions (g/lm/naut.mile) 25 2 15 1 5 1 15 2 25 3 35 4 45 Lanemeter Fig. 12 CO 2 emissions per lane metre per nautical mile of Ro-Ro cargo ships (ShipPax 211). Trafikdage på Aalborg Universitet 211 ISSN 163 9696 11

CO2 emissions (g/lm/naut.mile) 12 1 8 6 4 2 Ro-Ro cargo ships Ro-Ro passenger ships Truck (15 m with 3 t cargo) 3 7 11 15 19 23 Length pp (m) Fig. 13 CO 2 emissions per lane metre per nautical mile of Ro-Ro ships versus trucks. Conclusions 1. An analysis of the volume demand for different cargo types (lorries, cars and passengers) on Ro-Ro passenger ships shows that the volume per unit for the various cargo types is nearly independent of the ship size, i.e. it is nearly constant for the different cargo types. 2. Using the volume per cargo unit thus found, it is possible to allocate the emissions and energy demand on the different cargo segments relative to the actual volume each of them occupies. Calculations show that the average weight (ship weight + cargo weight) per volume is more or less on the same level for the different cargo segments, which means that the volumetric allocation method is also a weight based allocation method. Thus, the method is justified as the energy demand of a Ro-Ro passenger ship is proportional to the ship s displacement. 3. Due to the diversity of Ro-Ro passenger ships, it is difficult to find accurate figures for the exhaust gas emissions and energy demand per transport unit. Especially, for smaller ferries the variation is great. 4. However, calculating the energy demand per ton cargo per km shows that the energy demand is highest for Ro-Ro passenger ships, less for Ro- Ro cargo ships and lowest when the cargo is carried by lorries. Reference List Hagemeister, C: Determination of a suitable transport unit for evaluation of environmental performance of Ro-Ro passenger ships. Bachelor thesis from Hochschule Bremen - Natur und Technik Studiengang - Schiffbau und Meerestechnik 21. ShipPax database - extract from January 211. ShipPax information, Halmstad, Sweden. Trafikdage på Aalborg Universitet 211 ISSN 163 9696 12