Pump Fillage Calculation (PFC) Algorithm for Well Control

Similar documents
Horizontal Gas Well Geometry A Look at Industry Practices/Outcomes

NEW SOUTH WALES. Both METRIC and Feet and Inches TIMES: am/pm Sunrise/Sunset Moon Phases Moon Rise/Set DIARY NOTES.

$6.60 NEW SOUTH WALES. Both METRIC and Feet and Inches TIMES: am/pm Sunrise/Sunset Moon Phases Moon Rise/Set DIARY NOTES.

$6.60 NEW SOUTH WALES. Both METRIC and Feet and Inches TIMES: am/pm Sunrise/Sunset Moon Phases Moon Rise/Set DIARY NOTES.

Automated Integration of Arrival and Departure Schedules

Contents. Beam pump Controller. Energy Efficiency in On shore Exploration- Oil Pumping Application

Saw Blade Lube Systems

UC Berkeley Working Papers

Tender Description Awarded Amount TP TRAILER 3-Jan-17 $11, Tender Description Awarded Amount STANDING OFFER AGREEMENT

1. Introduction. 2.2 Surface Movement Radar Data. 2.3 Determining Spot from Radar Data. 2. Data Sources and Processing. 2.1 SMAP and ODAP Data

Runway Roughness Evaluation- Boeing Bump Methodology

City Directory Report

Abstract. Introduction

Demand Forecast Uncertainty

SAMTRANS TITLE VI STANDARDS AND POLICIES

American Airlines Next Top Model

Aviation Sector Upbeat domestic demand, a sweet spot for LCCs

HEATHROW COMMUNITY NOISE FORUM

Greater Orlando Aviation Authority, Florida; Airport

PRIVATE AIRCRAFT Ownership, Fractional, Jet Card or Charter?

Estimating the Risk of a New Launch Vehicle Using Historical Design Element Data

Clinical results using the Holladay 2 intraocular lens power formula

NOISE AND FLIGHT PATH MONITORING SYSTEM BRISBANE QUARTERLY REPORT JULY - SEPTEMBER 2011

NOISE AND FLIGHT PATH MONITORING SYSTEM BRISBANE QUARTERLY REPORT OCTOBER - DECEMBER 2013

Tender Description Awarded Amount CHEMICALS FOR WATER TREATMENT STANDING OFFER AGREEMENT

300Q-5 Quintuplex Plunger Pump Parts List

- Online Travel Agent Focus -

North American Online Travel Report

Airspace Encounter Models for Conventional and Unconventional Aircraft

Analysis of en-route vertical flight efficiency

Economic Impact Analysis. Tourism on Tasmania s King Island

Project No Brent Cross, Cricklewood London, UK Phase 1A North RMA

Otago Economic Overview 2013

ultimate traffic Live User Guide

SATELLITE CAPACITY DIMENSIONING FOR IN-FLIGHT INTERNET SERVICES IN THE NORTH ATLANTIC REGION

Rappahannock-Rapidan Regional Commission 2010 Travel Time Survey

Northfield to Ingle Farm #2 66 kv Sub transmission line

Asia Pacific Regional Aviation Safety Team

An Analysis of Dynamic Actions on the Big Long River

LOS ANGELES INTERNATIONAL AIRPORT

Clustering ferry ports class-i based on the ferry ro-ro tonnages and main dimensions

Runway Roughness Evaluation- Boeing Bump Methodology

Runway Roughness Evaluation- Boeing Bump Methodology

CHAPTER 4: PERFORMANCE

A Primer on Fatigue Damage Spectrum for Accelerated and Reliability Testing

Applying Integer Linear Programming to the Fleet Assignment Problem

RESCUE SUPPORT SYSTEMS TRIPOD CONVERSION KIT PN

General Conditions of Carriage for Passengers and Baggage

New ADA Accessibility Standards for the Attractions Industry

HOTFIRE WILDLIFE MANAGEMENT MODEL A CASE STUDY

Best schedule to utilize the Big Long River

CHAPTER 5 SIMULATION MODEL TO DETERMINE FREQUENCY OF A SINGLE BUS ROUTE WITH SINGLE AND MULTIPLE HEADWAYS

AASHTO AS Presented to AASHTO T 8, June 13, 2017

VIEWPOINT JANUARY Japan Hotel Market Outlook

USE OF 3D GIS IN ANALYSIS OF AIRSPACE OBSTRUCTIONS

Runway Length Analysis Prescott Municipal Airport

Estimating passenger mobility by tourism statistics

Tender Description Awarded Amount. Tender Description Awarded Amount TP TOLO RAINBOW STACKER 4-Jul-16 $38,200.00

Establishing a Risk-Based Separation Standard for Unmanned Aircraft Self Separation

MEMORANDUM. Lynn Hayes LSA Associates, Inc.

ROYAL VIEW DEVELOPMENT

Supersedes: AD3V (991) AD3V (1294)

Texas Transportation Institute The Texas A&M University System College Station, Texas

2522 and 2523 Fiber Optic Splice Organizer Tray

Proposed suas Safety Performance Requirements for Operations over People

This Advisory Circular relates specifically to Civil Aviation Rule Parts 121, 125, and 135.

Attachment F1 Technical Justification - Applicability WECC-0107 Power System Stabilizer VAR-501-WECC-3

PREFACE. Service frequency; Hours of service; Service coverage; Passenger loading; Reliability, and Transit vs. auto travel time.

Activity Template. Drexel-SDP GK-12 ACTIVITY. Subject Area(s): Sound Associated Unit: Associated Lesson: None

HOW TO IMPROVE HIGH-FREQUENCY BUS SERVICE RELIABILITY THROUGH SCHEDULING

Example report: numbers are for illustration purposes only

New generation aircraft in the instrument approach domain. Jean-Christophe Lair Airbus Test pilot 1 st Feb. 2017

Instructions. Fibrlok TM 2670 Multi-Fiber Ribbon Construction Tool. November, B

ISPA 2009 U.S. Spa Compensation Data INTERNATIONAL SPA ASSOCIATION

Efficiency and Environment KPAs

I AO Chi h e i f E c E on o o n m o i m c i A na n ly l s y is i & P o P l o ilc i y y Se S ctio i n

St. Croix Savanna SNA

PRESCHOOL JUMPER KIDS TRAMPOLINE. Not recommended for children under 3 years of age.

Agenda. Cardiff Bus competition law ruling. What s driving damages? The 2 Travel v. Advancing economics in business. Establishing the counterfactual

FliteStar USER S GUIDE

ALTA/ACSM LAND TITLE SURVEY Parts of Augusta Heights, First Section (Plat Book 20, Page 5), Augusta Heights, Second Section (Plat Book 19, Page 25),

Q3 FY18 Business Highlights

ESTIMATION OF ECONOMIC IMPACTS FOR AIRPORTS IN HAWTHORNE, EUREKA, AND ELY, NEVADA

Effect of Support Conditions on Static Behavior of 1400m main span and 700m side span Cable-stayed Bridge

SIMULATION MODELING AND ANALYSIS OF A NEW INTERNATIONAL TERMINAL

AERODROME METEOROLOGICAL OBSERVATION AND FORECAST STUDY GROUP (AMOFSG)

Meeting the Management 2017 Structurally improving the financial profile. Michael Pontzen, CFO

Self Catering Holidays in England Economic Impact 2015

Procedures for Approval of Master Minimum Equipment List

A Simulation Approach to Airline Cost Benefit Analysis

Rescue Parachute User Manual

Awarded Amount 1-Oct-14 $22, Awarded Amount 21-Oct-14 $3, Description Awarded Amount FOOTWEAR. 24-Oct-14 N/A.

HIG Project # Date Created 08/16/2016

U.S. Coast Guard - American Waterways Operators Annual Safety Report

CORRESPONDENCE ANALYSIS IN EXAMINATION OF REASONS FOR FLIGHT SCHEDULE PERTURBATIONS

DATA APPLICATION CATEGORY 25 FARE BY RULE

TABLE OF CONTENTS. Coral Springs Charter High School and Middle School Job No Page 2

Comparison of Arrival Tracks at Different Airports

CASCADE OPERATIONAL FOCUS GROUP (OFG)

Half Year F1 Results. November 4, 2015

Transcription:

6 th Annual Sucker Rod Pumping Workshop Wyndham Hotel, Dallas, Texas September 14 17, 2010 Pump Fillage Calculation (PFC) Algorithm for Well Control Victoria Ehimeakhe, Ph.D. Weatherford

Introduction For many producing wells assisted by beam pumping, the rate at which the reservoir fluids are produced (pump displacement) can exceed the rate at which the formation is supplying fluids into the wellbore. This leads to what is commonly known as pump off or fluid pound. Fluid pound can cause rod compression / buckling, leading to rod and tubing damage. In order to maximize production and minimize costs, a well can be controlled using calculated pump fillage by slowing or stopping the well. Pump fillage is obtained from the downhole position and load data. Pump fillage can be an illusive value to find especially when dealing with gas compression, viscous fluids, deviated wells The pump fillage calculation (PFC) is a method comprised of four algorithms that use only downhole data to compute the pump fillage for a given pumping unit stroke. 2010 Sucker Rod Pumping Workshop 2

The Pumping Cycle Top of stroke (TOS) corresponds to the end of the pumping unit upstroke. Bottom of stroke (BOS) corresponds to the end of the pumping unit downstroke. The transfer point corresponds to the point at which the TV opens on the downstroke. 2010 Sucker Rod Pumping Workshop 3

Method of Positions Let p(t), t = 1,, N be the downhole position data comprised of N points. The transfer point (TP) is characterized by a plateau, i.e. a change in concavity. The top of stroke (TOS) is located by finding the critical point of the downhole position data, i.e. finding the point where the 1 st derivative of the downhole position data intersects the x- axis. The change in concavity is linked to the 2 nd derivative. If f (x)>0, the graph of f(x) will be concave up, while if f (x)<0, the graph of f(x) will be concave down. Therefore, finding the transfer point is the same as finding the maximum of p (t) in between the critical point and the absolute minimum. This means finding the point where the graph is concave up between the top of stroke and the part of the graph where the graph is concave down. 2010 Sucker Rod Pumping Workshop 4

Method of Loads Let f(t), t = 1,,N be the downhole load data. The transfer point is characterized by a sharp drop in the load values. This sharp drop in load corresponds to the points at which the slope of the data is the most negative, i.e. the 1 st derivative of the downhole load is at its minimum. Therefore, locating the transfer point is equivalent to computing the 1 st derivative of the downhole load and finding its absolute minimum. 2010 Sucker Rod Pumping Workshop 5

Method of Ordering The downhole load data is organized into top points and bottom points by taking the top eighth and bottom eighth section of the downhole card. The average middle value is calculated from the intersection of the card with the imaginary half line. The position value corresponding to these average values can be calculated by finding the position point nearest to the intersection of the horizontal average lines with the graph of the downhole card. The current pump fillage value is taken to be the combination of the ratios of the position corresponding to the average bottom value and the average middle value to the position corresponding to the average top value of TOS. 2010 Sucker Rod Pumping Workshop 6

Pump Fillage Calculation (PFC) The pump fillage calculation (PFC) is composed of the three methods presented previously. Under certain operating conditions such as gas compression, viscous fluids, deviated wells and wells with a worn pump or tagging bottom, the pump fillage value for a given stroke might prove more difficult to compute. Under these conditions, the method of Positions, Loads and Ordering may output different results for the calculated pump fillage value. A fourth method is therefore needed to approximate the pump fillage range for a given downhole card. 2010 Sucker Rod Pumping Workshop 7

Method of Multiple Pump Fillage (MPF) The load span of the downhole card is divided into M segments, yielding a set of M load values, L i, i = 1,,M. The position at each segment is calculated by finding the (position, load) pair closest to the intersection of the horizontal load segment with the downhole card. The pump fillage at each segment L i, is computed by taking the ratio of each of the corresponding position value to the top of stroke, yielding a set of M pump fillage values, Pf i, i = 1,,M : Pf i = position(l i ) / position(tos). 2010 Sucker Rod Pumping Workshop 8

Method of Multiple Pump Fillage (continued) A set of M pump fillage values Pf i, i = 1,,M are output from the above method. The values can be plotted. The MPF graph shows plateaus where the pump fillage is the same for several load segments. The range of the Pf i is 0 Pfi 100. This range is split into K increments. Sorting the Pf i into the K intervals by number of occurrences creates a probability density function, PDF. The maximum of the PDF represents the interval in which the pump fillage value is most likely to lie. 2010 Sucker Rod Pumping Workshop 9

Overview of PFC algorithm 2010 Sucker Rod Pumping Workshop 10

Delta Program Historically, pump fillage has been calculated by various beam pumping analysis programs. LOWIS is Weatherford s artificial lift host software package. The beam analysis module in LOWIS is used to analyze rod pumped wells and determine pump fillage from the resulting downhole cards. The Delta program is a complete analysis program used in LOWIS, which contains a method for pump fillage approximation. The Delta program has been used in the industry since the 1960 s. In the following slides results from PFC are compared to the pump fillage values output by the Delta program. 2010 Sucker Rod Pumping Workshop 11

Full Card Example 1: Delta pump fillage 96.45, PFC pump fillage 100, pump fillage interval [100, 101]. Description: Full pump fillage 2010 Sucker Rod Pumping Workshop 12

Full Card Example 2: Delta pump fillage 97, PFC pump fillage 100, pump fillage interval [100, 101]. Description: Full card tagging bottom 2010 Sucker Rod Pumping Workshop 13

Gas Compression Example 3: Delta pump fillage 16.06, PFC pump fillage 8.3, pump fillage interval [7,10 ]. Description: Pumped off well with gas compression 2010 Sucker Rod Pumping Workshop 14

Gas Compression Example 4: Delta pump fillage 100, PFC pump fillage 2.5, pump fillage interval [1,4 ]. Description: Pump barrel completely filled with gas. 2010 Sucker Rod Pumping Workshop 15

Gas Compression Example 5: Delta pump fillage 94.59, PFC pump fillage 1.79, pump fillage interval [1,4 ]. Description: Pump barrel almost completely filled with gas. 2010 Sucker Rod Pumping Workshop 16

Unusual Card Shape Example 6: Delta pump fillage 82.98, PFC pump fillage 100, pump fillage interval [100, 101]. Description: Unexplained card shape 2010 Sucker Rod Pumping Workshop 17

Tight Spot During Downstroke Example 7: Delta pump fillage 31.84, PFC pump fillage 97.61, pump fillage interval [97,100 ]. Description: Load loss on downstroke 2010 Sucker Rod Pumping Workshop 18

Pump Tagging Bottom Example 8: Delta pump fillage 16.03, PFC pump fillage 98.38, pump fillage interval [97, 100]. Description: Almost full pump - tagging bottom 2010 Sucker Rod Pumping Workshop 19

Statistics: 1000 wells 2010 Sucker Rod Pumping Workshop 20

Conclusions PFC is a robust algorithm capable of calculating reliable and accurate pump fillage values regardless of well conditions. The multi-method approach guarantees that each method is utilized according to its strength. Using PFC results in combination with a methodology to control the well from the pump fillage maximizes well production while minimizing the operating costs. 2010 Sucker Rod Pumping Workshop 21

Copyright Rights to this presentation are owned by the company(ies) and/or author(s) listed on the title page. By submitting this presentation to the Sucker Rod Pumping Workshop, they grant to the Workshop, the Artificial Lift Research and Development Council (ALRDC), and the Southwestern Petroleum Short Course (SWPSC), rights to: Display the presentation at the Workshop. Place it on the www.alrdc.com web site, with access to the site to be as directed by the Workshop Steering Committee. Place it on a CD for distribution and/or sale as directed by the Workshop Steering Committee. Other use of this presentation is prohibited without the expressed written permission of the author(s). The owner company(ies) and/or author(s) may publish this material in other journals or magazines if they refer to the Sucker Rod Pumping Workshop where it was first presented. 2010 Sucker Rod Pumping Workshop 22

Disclaimer The following disclaimer shall be included as the last page of a Technical Presentation or Continuing Education Course. A similar disclaimer is included on the front page of the Sucker Rod Pumping Web Site. The Artificial Lift Research and Development Council and its officers and trustees, and the Sucker Rod Pumping Workshop Steering Committee members, and their supporting organizations and companies (here-in-after referred to as the Sponsoring Organizations), and the author(s) of this Technical Presentation or Continuing Education Training Course and their company(ies), provide this presentation and/or training material at the Sucker Rod Pumping Workshop "as is" without any warranty of any kind, express or implied, as to the accuracy of the information or the products or services referred to by any presenter (in so far as such warranties may be excluded under any relevant law) and these members and their companies will not be liable for unlawful actions and any losses or damage that may result from use of any presentation as a consequence of any inaccuracies in, or any omission from, the information which therein may be contained. The views, opinions, and conclusions expressed in these presentations and/or training materials are those of the author and not necessarily those of the Sponsoring Organizations. The author is solely responsible for the content of the materials. The Sponsoring Organizations cannot and do not warrant the accuracy of these documents beyond the source documents, although we do make every attempt to work from authoritative sources. The Sponsoring Organizations provide these presentations and/or training materials as a service. The Sponsoring Organizations make no representations or warranties, express or implied, with respect to the presentations and/or training materials, or any part thereof, including any warrantees of title, non-infringement of copyright or patent rights of others, merchantability, or fitness or suitability for any purpose. 2010 Sucker Rod Pumping Workshop 23