RACOON. Summary RACOON is the ENAV led demonstration

Similar documents
RACOON PROJECT Daniele Teotino - ENAV. RACOON Project Manager Head of SESAR JU Activity Coordination

SESAR Delivering Digital Remote Tower Solutions

Advanced Flexible Use of Airspace (AFUA) Kris DELCOURTE, EUROCONTROL Davide BARDELLI, LUFTHANSA SYSTEMS

SWISS Proposals SJU Large Scale Demonstration Timeline Eric Nantier, Operations Research and ATM, May 2014

Follow up to the implementation of safety and air navigation regional priorities XMAN: A CONCEPT TAKING ADVANTAGE OF ATFCM CROSS-BORDER EXCHANGES

Contextual note SESAR Solution description form for deployment planning

UK Implementation of PBN

The Single European Sky and SESAR, the European ATM modernisation programme. Patrick Ky, Executive Director 26 May 2010

Trajectory Based Operations (TBO)

EUROCONTROL. Centralised Services concept. Joe Sultana Director Network Manager 1 July 2013

TWELFTH AIR NAVIGATION CONFERENCE

Contextual note SESAR Solution description form for deployment planning

2012 Performance Framework AFI

ICAO PBN CONCEPTS, BENEFITS, AND OBJECTIVES

Workshop. SESAR 2020 Concept. A Brief View of the Business Trajectory

Packaging Tomorrow s Aviation System

Ops Credit for Advanced Aircraft Equipment Improving Accessibility at Secondary Airports

TWELFTH AIR NAVIGATION CONFERENCE

DANUBE FAB real-time simulation 7 November - 2 December 2011

Air traffic services (ATS) datalink using Iris Precursor. Contextual note SESAR Solution description form for deployment planning

Single European Sky Awards Submission by the COOPANS Alliance. Short description of the project. (Required for website application)

SESAR ANNUAL DEMO WORKSHOP. Toulouse, October 2014 TOPLINK 1 & 2 Daniel MULLER, TOPLINK PM

TWELFTH AIR NAVIGATION CONFERENCE

SESAR Solutions. Display Options

SESAR Solutions at ATC Global Surface Management

Disruptive Technologies in Air Traffic Management

NEFAB Project Feasibility Study Report Operational Concept

Next Generation Airspace Developments: Key Operational Trends and Enablers

TWELFTH AIR NAVIGATION CONFERENCE

ICAO framework for LPV

Home LIST OF ACRONYMS

ART Workshop Airport Capacity

Contextual note SESAR Solution description form for deployment planning

i4d A MANUFACTURING INDUSTRY PERSPECTIVE GROUND AND AIRBORNE ASPECTS Michel Procoudine Lionel Rouchouse Thales

Modernising UK Airspace 2025 Vision for Airspace Tools and Procedures. Controller Pilot Symposium 24 October 2018

The support of an European ANSP

Workshop on the Performance Enhancement of the ANS through the ICAO ASBU framework. Dakar, Senegal, September 2017 presented by Emeric Osmont

Patrizio Vanni (Project Coordinator)

Cooperative traffic management

Enter here your Presentation Title 1

Electronic visibility via ADS-B for small aircraft. John Korna, NATS

PROJECT LSD IAA REMOTE TOWER. 28 th /29 th November 2018 Cranfield

FASI(N) IoM/Antrim Systemisation Airspace Change Decision

AMAN RESEARCH IN SESAR

ATM STRATEGIC PLAN VOLUME I. Optimising Safety, Capacity, Efficiency and Environment AIRPORTS AUTHORITY OF INDIA DIRECTORATE OF AIR TRAFFIC MANAGEMENT

CEPT Workshop on Spectrum for Drones / UAS

SEAMLESS SKY IN EUROPE. Carlo Maria Borghini Director Administration and Finance Muscat, OMAN October 2009

IATA User Requirements for Air Traffic Services (URATS) NAVIGATION. MIDANPIRG PBN SG/3 Meeting Cairo, Egypt, February 2018

Seychelles Civil Aviation Authority. Telecomm & Information Services Unit

TWELFTH AIR NAVIGATION CONFERENCE

Measurement of environmental benefits from the implementation of operational improvements

TWELFTH AIR NAVIGATION CONFERENCE

European Joint Industry CDA Action Plan

DSNA NAVIGATION STRATEGY

Operations Control Centre perspective. Future of airline operations

PBN Performance. Based Navigation. - PBN & Airspace Concepts - ICAO PBN Seminar Introduction to PBN

Air Navigation Bureau ICAO Headquarters, Montreal

EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR MOBILITY AND TRANSPORT

International Civil Aviation Organization. PBN Airspace Concept. Victor Hernandez

UAS ATM OPERATIONAL CONCEPT

ATFM IMPLEMENATION IN INDIA PROGRESS THROUGH COLLABORATION PRESENTED BY- AIRPORTS AUTHORITY OF INDIA

SDM Workshop on PBN Airborne Perspective. Michael Hopp, Lufthansa Group Brussels,

Russian Federation ATM modernization program

Performance Based Navigation (PBN) Implementation Plan. The Gambia

RNP AR APCH Approvals: An Operator s Perspective

Demonstration Report. Abstract. Document information. Project Manager. Edition

IRISH AVIATION AUTHORITY DUBLIN POINT MERGE. Presented by James O Sullivan PANS-OPS & AIRSPACE INSPECTOR Irish Aviation Authority

Optimizing trajectories over the 4DWeatherCube

Civil-Military Cooperation. Advanced Flexible Use of Airspace

EUROCONTROL General Presentation

Development of the Safety Case for LPV at Monastir

AERONAUTICAL SERVICES ADVISORY MEMORANDUM (ASAM) Focal Point : Gen

Screening Chapter 14 Transport. Single European Sky (SES) 18 December Transport

SESAR RPAS Definition Phase Results & Way Forward. Denis Koehl Senior Advisor SESAR Joint Undertaking

European Airport Movement Management by A-SMGCS > a contribution to the vision 2020 and SESAR <

Peter Sorensen Director, Europe Safety, Operations & Infrastructure To represent, lead and serve the airline industry

In cover a detail of new night/ week end shortest routes for overflying Sardinia Area

PBN, ADQ, ADQ2 IR EUROCONTROL Activities Status

SESAR CONCEPT DEVELOPMENT: AN ANSP CASE STUDY. Owen DAVIES Brussels Representative Department of International Affairs, NATS

SOUTH AFRICA PBN NEAR TERM IMPLEMENTATION PLAN PROJECT

ORGANISER HOST LEAD SPONSOR

AN-Conf/12-WP/162 TWELFTH THE CONFERENCE. The attached report

DFS Aviation Services GmbH. A brand of experience. Aviation Services

EUROCONTROL approach to the execution of the PBN IR Mandate

ICAO EUR Region Civil/Military Cooperation Seminar/Workshop

DFS Aviation Services GmbH. A brand of experience

Workshop Exercise, EGYPT Air Navigation Plan 10 /12/2010

The SESAR Airport Concept

First LPV 200 approach in Europe. Paris Charles de Gaulle. Benoit Roturier DSNA ESSP Workshop Warsaw Direction Générale de l Aviation Civile

Towards the Future ATM

French DSNA approach to CNS rationalization & evolution

European ATM Development The Big Idea

Aircraft Systems and 4D Trajectory Management

Validation Plan & Objectives. Maik Friedrich, DLR PJ05 Braunschweig, 22 of November 2017

NORTH ATLANTIC VISION

Iris Information Event October Overview of SESAR P. Tavernise

Promoting EGNSS Operational Adoption in BLUEMED FAB CYPRUS

PBN Implementation Plan Tonga

DMT Report. Overview for Step 1. Maturity Assessment Issue date: (OFA view) 28/01/2015

FF-ICE A CONCEPT TO SUPPORT THE ATM SYSTEM OF THE FUTURE. Saulo Da Silva

Transcription:

RACOON Summary RACOON is the ENAV led demonstration activity on Remote TWR concept and RNP APCH procedures. The project aims at demonstrating, within the Italian airport context, that these two concepts represent, singularly or combined, a viable solution to optimise, under specific operational and technical conditions, the level of aerodrome ATS services, with special reference to Cost Efficiency and Access & Equity KPAs. The project addresses both single and multiple airport remote TWR concepts and relies on a stepwise demonstration approach, encompassing the execution of RTS and Shadow Mode sessions as preparatory steps to the Live/Flight trials. 1

The Partnership and as supporting Partners: 2

Scope Deployment of the required technical infrastructure and definition of the operational conditions for operating at least one National interest airport remotely from the cluster Strategic Airport Provision of ATS/ATC services to a Single runway Aerodrome from a remote location, under given operational conditions and technical assumptions (night operations, low traffic conditions, good weather condition) Sharing of ATS services for multiple airport, under given operational conditions and technical assumptions (night operations, low traffic conditions, good weather condition) Acceptability/flyability of RNP APCH (APV BARO / LPV SBAS) procedures, also in combination with the Remote Tower solution GNSS monitoring (including real time monitoring solutions) 3

KPAs addressed 1. The Project is oriented at investigating onto: Cost Effectiveness Access and Equity with the aim at demonstrating how the described solutions can provide improvements to those KPAs 2. without negatively affecting the main KPAs in ATM: Safety Security Capacity Human Performance 4

Demonstration Context The North West traffic cluster Milano Malpensa LIMC, being the Strategic airport, to host the Remote Tower Centre (RTC) Milano Linate LIML, as the National interest airport to be operated remotely through the Remote Tower Module (RTM); A generic additional airport LIXX, to be operated remotely through the same RTM 5

Demonstration Approach STEP 1: execution of RTS exercises aimed to support the definition of the safety and security cases for the identified scenarios STEP 2: conduction of Shadow Mode operations to assess the readiness of the Remote TWR environment STEP 3: Demonstrations with Flight Trials to investigate different use cases: RNP APCH procedures, with local control Conventional procedures, with remote control RNP APCH procedures, with remote control ATS services for multiple airports STEP 4: development of a CBA methodology for the combined use of the two concepts within a cluster of airports where such solution would be viable to increase Cost efficiency and Access&Equity KPAs. 6

Demonstration Scenarios ID Description Day/night ops Means of Demo HLS RCN 001 Conventional procedures conducted on single remote airport (LIML) Night Shadow M. Live Trials CBA HLS RCN 002 Non Conventional procedures conducted at LIML RWY36, overlaying ILS Both Live Trials CBA HLS RCN 003 HLS RCN 004 Non Conventional procedures conducted at LIML RWY35, existing FATO (and new FATO, if possible) Non Conventional procedures conducted on single remote airport (LIML) Both Live Trials CBA Night Shadow M. Live Trials CBA HLS RCN 005 Multiple (2) airports traffic coordination: 1 local (LIMC) and 1 remote (LIML) HLS RCN 006 Multiple (3) airports traffic coordination: 1 local (LIMC) and 2 remote (LIML/LIXX) Night Night RTS Shadow M. Live Trials CBA RTS Shadow M. Live Trials CBA 7

8 Schedule

Expected Outcomes Demonstrating that Remote Tower concept for Single Runway Airport is a mature and cost efficient solution for maintaining the level of ATS services provision at small/medium airports Delivering positive business case for the introduction of remote tower services (single/multiple airports) for the Italian airports, and a CBA model to be applied to any other clustering of Airports in Europe Delivering recommendations to support standardisation/certification work on Remote Tower operations Fostering the deployment of RNP APCH in line with the PCP IR objectives and ICAO resolutions on RNP Proposing GNSS real time monitoring solutions Demonstrating that Remote TWR services and RNP APCH procedures, singularly or in combination, are a viable solution to increase the level of service and accessibility to different classes of airspace users Preliminary assessing the operational and technical feasibility of the multiple airports solution and then feeding the SESAR 2020 further work on this item 9

Thanks for your attention @radioracoon1 https://twitter.com/radioracoon1 10

Remote Towers Scope Shannon Dublin The provision of aerodrome control service (air movements control and surface movements control) for Cork and Shannon airports from a Remote Tower Facility (RTF), located at Dublin Air Traffic Services unit. Cork 11

Aim of Project The aim is to delivery benefits in line with SESAR high level objectives: Safety Enhanced controller tools Cost Greater productivity and resource deployment Capacity Enhanced Contingency Environment Improved airport integration 13

Project Team / Consortium Project Management Barry Griffin Engineering Manager Dublin T +353 1 8067308 barry.griffin@iaa.ie Project Coordination Gerald Caffrey Manager Operational Support T +353 1 6031521 gerald.caffrey@iaa.ie Contractual Aspects Cathal Casserly Manager Contracts and Procurement T +353 1 6031517 cathal.casserly@iaa.ie Operations Management Cathal MacCriostail Operations Manager Cork & Shannon T +353 21 4237868 cathal.maccriostail@iaa.ie Operational Requirements Peter Kavanagh Manager Operational Requirements T +353 61 366082 Peter.kavanagh@iaa.ie Project Management Patrick Tarrant Manager Flight Data Processing T +353 61 366212 patrick.tarrant@iaa.ie Airport Interface Robert Hilliard Director Dublin Airport Authority robert.hilliard@daa.ie Airlines Interface Brian Horgan Operations Manager Stobart Air brian.horgan@stobartair.com Regulatory Management Tom Regan Regulatory Liaison tom.regan@iaa.ie 14

Timescales Call for Tender October 2014 Contract with System Supplier March 2015 System Site Acceptance Testing Completed December 2015 Regulatory Acceptance for Trials April 2016 Demonstrations Commence April 2016 Demonstrations Conclude August 2016 Final Reporting September 2016 16

Project Trials Minimum of 50 Demonstration Exercises Three Batches: 5, 15, 30 Exercise Scenarios/Periods to Match Objectives Iterative progression, SMC, SMC & AMC, in sequence leading to simultaneous Objectives for each exercise, incrementally added Shadow Operations at Local Towers 17

18

Project Dependencies & Risks Supplier Equipment/Existing Technology Regulatory Acceptance not Received Project Scope not Fully Understood Project Plan/Objectives/Criteria not clear Timelines/Milestones not Maintained Resources (Human/Budget) not Properly Estimated/Controlled 19

Interface with the Regulator Regular Meetings and Briefings Ensures Expectations of SJU, NSA and Project are met Regulatory Requirements and Safety Objectives Well Understood Enables Concurrent Sign off at Project Milestones 20

21

Expected Outcomes Expectations of SJU, Project Sponsor/Consortium Achieved ATM Services/Performance Improvements Contribution to EATMN Performance Shortcomings and/or Limitations Minimal Evidential Justification for Deployment by Irish Aviation Authority Support to SESAR Vision ATM Master Plan 22

23 Thank you..

Remote Tower (RTO) SESAR Large Scale Demonstration LOT 2 Solutions for small/medium size airports

Organisation

Demo objectives

Goal LVNL Obtain experience with the remote tower concept; Investigate future applications Service provision regional airports Cost efficiency of incidental flights during night period Back-up facilities for conventionele torens.

Airport situation NL

Groningen (medium size) Demonstration LVNL Beek simulated (small size) Remote Tower demonstration for Eelde (live) and Beek (simulated by NARSIM) from one CWP with one ATCO. LVNL Schiphol Oost Saab Remote Tower System

Project Planning

Synergies 1. Experience within projectteam (e.g. relationship with NSA s) 2. Exchange of information with other ANSPs (e.g. ENAV, DSNA) 3. Support to SESAR demo days and workshops

Final thought The wise man said it could not be done. The fool did it, because he did not know, that it could not be done.

33 Thank you..

Moving From Airspace to 4D Trajectory Management Airspace users plan their business and mission trajectories: Following User Preferred Routes Within airspace not constrained by a fixed route network; and Where airspace reservations are managed dynamically All stakeholders use a shared and consistent view of flight data, working collaboratively to plan and execute trajectories that fully meet Airspace User needs In the execution phase 4D trajectory data is enriched with current airborne data shared via data link Moving from Airspace to 4D Trajectory Management 4D Trajectory Management creates an environment where air and ground stakeholders share a common view of the aircraft s trajectory, so that the flight can be managed as closely as possible to the Airspace User s ideal profile, while optimising the flow of air traffic. 34

SESAR ANNUAL DEMO WORKSHOP Toulouse, 28 29 October 2014 Day 2: New Project Plans PEGASE Project: Project Coordinator: Jean Louis BIGOT (Airbus)

PEGASE: Project Description PEGASE: Providing Effective Ground & Air data Sharing via EPP. PEGASE supports SESAR Priority Strategic Business Needs moving from Airspace to 4D Trajectory Management PEGASE will provide EPP information on projected aircraft trajectory calculated with the aircraft s systems. EPP information will be shared with ANSPs, and ground manufacturer systems, for operational use. Off line analysis will be performed for statistics on EPP performance and reliability. 36 EPP: Extended Project Profile

PEGASE: Project Objectives Building on previous SESAR exercises and SESAR i4d flight trials Aligned with PCP* AF**#6 (Initial Trajectory Information Sharing) Designed to illustrate that EPP provides accurate and reliable info: 100 flights in busy European airspace 3 ANSPs and one ground manufacturer + the Network Manager Designed to demonstrate that EPP incorporated in ATC ground systems enables: A reduction of spurious conflict and traffic alerts A better management of separations and complex traffic flows Lesser need for Radio Telephony communications More predictable climb / descent Paving the way to SESAR 2020 Very Large Demonstrations 37 * PCP: Pilot Common Project, ** AF: ATM Functionalities

PEGASE: Consortium Description The PEGASE Consortium includes the following partners: AIRBUS EUROCONTROL NATS skyguide THALES And is supported by Honeywell & SITA 38

Laboratory Simulator Validation Validation PEGASE: Project Content Flight Tests EPP Performance Analysis End User Feedback on EPP Operational Usage 39

PEGASE: Implementation Timeframe PHASE I: Simulator sessions : Airbus / EUROCONTROL / NATS / Skyguide / Thales PHASE II: 1 st EPP flight PHASE III: Running mode (+/ 10 flights per month) Equipment Request Simulator preparation Simulator sessions Flight preparation Laboratory activities: to provide the GO for flight Gate P 1 1 st EPP Flight With partners Ferry Flight Execution, Analysis, Operational Gate Demonstration Plan D P P 2 Demonstration Report D R 40

PEGASE: Expected Results Illustrate EPP reliability, to foster ANSPs confidence on data usage. Confirm expectations for the efficiency of future ATC tools based on improved 4D accuracy: Conformance Monitoring Conflict Detection Enhanced Arrival Management... Specifically, with regards to benefits on: Safety Flight Predictability & flexibility Airspace and Airport Capacity. 41

42 Thank you..

FREE Solutions Summary FREE Solutions aims to bridge R&D towards deployment, proving the benefits of some Free Route operational solutions in real life environment. The project will demonstrate the potential linked with deployment of more efficient City Pairs, Direct Routing and Free Routing operations over a wide multi FAB continental area as a first step towards the implementation of Airspace Users preferred business trajectories. Making reference to current ATM system capabilities and more effective FUA operations, FREE Solutions demonstration activities are expected to bring effective benefits in terms of fuel savings, reduction of CO2 emissions, improved realtime flight planning capabilities as well as higher ATM performances, flexibility and efficiency. 43

The Partnership The consortium led by ENAV S p A consists of 5 AU, 5 ANSPs and NM: ENAV S.p.A., Air France Group, Alitalia, DFS, DSNA, EUROCONTROL/Network Manager, Lufthansa, MATS, Ryanair, Skyguide and Swiss Airlines. 44

Scope FREE Solutions project activities are mainly focusing on two ATM Functionalities already identified in the Pilot Common Project: Flexible Airspace Management and Free Route; Network Collaborative Management. The scope of the project is the definition and demonstration of Free Route operational solutions over a wide multi FAB continental area to improve ATM performances, flexibility and efficiency. City pairs and Direct Routings: moreefficientcity pairs and direct routings providing performance enhancements in terms of mileage savings, fuel consumption and environmental impacts, combining horizontal and/or vertical efficiency improvements. Free Routing: designing and testing an ad hoc cross border/fab Free Route Airspace (FRA) across 4 countries where AUs will be free to fly from a fixed entry point to a fixed exit point on the basis of their business/operational needs. Flexible Use of Airspace (FUA): further exploiting the effective and flexible use of airspace through a more efficient and dynamic civil military coordination and an enhanced AUs flight planning process. 45

Project Work flow WP2 DEMONSTRATION PLAN, REQUIREMENTS AND PROCEDURES WP3 OPERATIONAL SOLUTIONS DESIGN City Pairs Direct Routing WP6 COMMUNICATION & FINAL REPORT CONOPS Consolidation Initial Safety Req.s Demonstration Plan Cross Border Free Route A FUA WP4 SOLUTIONS PERFORMANCE ASSESSMENT WP5 FLIGHT TRIALS Demo Trials preparation Dress Rehearsal & Training Flight Trials Execution Data Collection & Analysis Final Demonstration Report Communication Environment\Capacity Case Safety Case HP Case WP1 PROGRAMME MANAGEMENT Project Monitoring and Control Quality & Risk Management 46

KPAs addressed The FREE Solutions project will assess the identified operational solutions performance benefits mainly in the following KPAs: Safety Environment Capacity Efficiency Human Performance The Safety performance assessment aims at demonstrating that all identified scenarios are acceptably safe and are not negatively affected by the proposed operational solutions. The Safety assessment approach adopted by FREE Solutions project encompasses a structured, planned and systematically organized process performed in accordance with European and National Regulations too. 47

Demonstration Approach STEP 1: Demonstration Plan production and definition of the most promising project operational solutions for both short to medium term and long term period. This first step will lead to the execution of a first set of flight trials focused on a set of optimised City Pairs. STEP 2: Building on the analysis and the outcomes of the trials performed on the city pairs, a set of cross border Direct Routings (DRs) will be selected for the execution of a second set of flight trials dedicated mainly to the defined Direct Routing operations. STEP 3: To pave the way and derisk/refine the procedures to be used for the final set of flight trials dedicated to cross border Free Routing operations a dedicated set of Real Time Simulation / Dress Rehearsal activity will be performed. The execution of RTS exercises will be also used for further consolidate the safety case for the proposed scenarios/exercises. STEP 4: Building on the proposed operational solutions and on the results of the RTS exercises, the final step of the FREE Solutions demonstration foresees the execution of a set flight trials focused on the defined Free Routing operations that will make reference to a dedicated Free Route Area. 48

Demonstration Scenarios ID Description Weekend/Weekday KPAs SCN LSD0105 001 City pairs Weekends Safety, Environment, Capacity, Predictability, Efficiency SCN LSD0105 002 City pairs Weekdays Safety, Environment, Capacity, Predictability, Efficiency SCN LSD0105 003 Direct Routing Weekends Safety, Environment, Capacity, Predictability, Efficiency SCN LSD0105 004 Direct Routing Weekdays Safety, Environment, Capacity, Predictability, Efficiency SCN LSD0105 005 Free Routing Weekends Safety, Environment, Capacity, Predictability, Efficiency, 49

50 Schedule

Expected Outcomes Demonstrate the benefits of the proposed FREE Solutions in a cross border/multi FAB scenario to the wider aviation community. Accelerating the cross border Free Route operational acceptance and the subsequent deployment of the proposed operational solutions. Development of a positive business case for the deployment of cross border Free Route operations Delivery of recommendations and more advanced ATM system requirements in support of the deployment/certification of Free Route operations Contribution to the SESAR work by delivering a comprehensive assessment on the operational and technical feasibility of Free Route operations. 51

52 Thanks for your attention