Commercial Human Spaceflight Safety

Similar documents
Commercial Human Spaceflight Safety

Launching a Sub-Orbital Spacecraft

Spaceflight Requirements & Safety Considerations when Operating from UK Spaceport(s)

Pseudo-Satellites and Their Use in Near Space

FAA Commercial Space Transportation Regulations: A Model for International Consideration. Federal Aviation Administration

Sven Kaltenhäuser, Frank Morlang, Dirk-Roger Schmitt German Aerospace Center DLR

Commercial Space Transportation Update

Final Program. Manfred Lachs Conference on the Regulation of Emerging Modes of Aerospace Transportation. 24 and 25 May 2013.

CLOSING PLENARY COMMERCIALIZATION OF SPACE TRAVEL

Air Traffic Management and Space Transportation System Wide Information Management and Integration into European Airspace

Final Program. Manfred Lachs Conference on the Regulation of Emerging Modes of Aerospace Transportation. 24 and 25 May 2013.

FEDERAL AVIATION ADMINISTRATION. Commercial Space Launch Industry Developments Present Multiple Challenges

Swiss Space Systems (S3)

Commercial Space Transportation in Italy. A framework in development

François CAHUZAC / Arnaud BIARD

Questionnaire on possible legal issues with regard to aerospace objects: replies from Member States

The Suborbital Space Tourism Project of EADS Astrium

Is it a Space Plane or Rocket? The Unique Aspects of a Commercial Space Accident Investigation.

High Speed Air and Space Transportation State of The Industry- Overview

The Regulatory Role of the

PROPRIETARY NINTH GRADE NINTH GRADE CURRICULUM BY UNIT

Space Transportation Systems. System Concepts

General Assembly Committee on the Peaceful Uses of Outer Space

SpaceX rocket destroyed on way to space station, cargo lost (Update) 28 June 2015, bymarcia Dunn

2011 U.S. Commercial Space Transportation Developments and Concepts: Vehicles, Technologies, and Spaceports January 2011

U.S. Commercial Space Transportation Regulations

The aeromedical challenges of commercial space flight

Arianespace Launch Service Operator Policy for Space Safety

Bob Hawkins Deputy Lead Engineer SLS Integrated Avionics and Software

A NEW FRONTIER IN TRAVEL: SUB ORBITAL

Range Safety Concerns for Launching Winged Vehicles from Canaveral Spaceport

Missions, Operations & Ground Infrastructure

Guidelines for the safe regulation, design

Space Activities Challenges and Opportunities. Panel Session

ACKNOWLEDGEMENTS. Centre for Research in Air and Space Law Institute of Air and Space Law. McGill University

Questions on suborbital flights for scientific missions and/or for human transportation

Future Innovations in Aircraft Design and

Aviation List. Admitted Liability: In aviation insurance, payments to an injured passenger made without the need of establishing liability.

FAA Regulations for Launch Sites and International Considerations

Questionnaire on possible legal issues with regard to aerospace objects: replies from Member States

July 2018 TRENDS IN TRANSPORT. The UK's Spaceport an opportunity in the commercial spaceflight market

Federal Aviation Administration Flight Plan Presented at the Canadian Aviation Safety Seminar April 20, 2004

EQUATORIAL LAUNCH AUSTRALIA

Introduction to Aerospace Engineering

ESA-EDA: Paving the Way for New UAS Capabilities in Europe

LEGAL COMMITTEE 36TH SESSION

Article VI of the Outer Space Treaty Issues and Implementation. Margaret Roberts Senior Attorney National Aeronautics and Space Administration

Addressing the Challenges to Aviation from Evolving Space Transportation JUNE 2018

Sub-Orbital Passenger Aircraft for Space Launch Operations

Safer Skies Through Avionics Maintenance Training and Certification

Payload Adapters and Separation Systems

July VA 219. ATV Georges Lemaître

Civil Remotely Piloted Aircraft System (RPAS) Regulations in Australia

Sub-orbital Spaceflight An addition to our multimodal transportation system

Proposed restricted area Mahia Peninsula airspace user consultation

A PHASED APPROACH TO ORBITAL PUBLIC ACCESS A PHASED APPROACH TO ORBITAL PUBLIC ACCESS

Successful Return to Flight of the H-IIA Launch Vehicle

This Document contains Proprietary Information of Rocketplane Global, Inc. Disclosure to others, use or copying without the express written

Keynote speaker - Bill Davis

Commercial Space Transportation

Pilots, navigators, and engineers train at the USAF Test Pilot School preparing to write new chapters in aerospace history.

ICAO/UNOOSA Aerospace Symposium An Inter-Agency Effort on Space Traffic Management

National Transportation Safety Board Aviation Incident Final Report

National Regulation of Private Suborbital Flights: A Fresh View

Estimating the Risk of a New Launch Vehicle Using Historical Design Element Data

International Civil Aviation Organization. Satellite spectrum to support the safe operation of Unmanned Aircraft Systems

Commercial Aviation Safety Team

Developing the Future Air and Space Transportation System Through Interagency Partnerships

Policies for Certification, operation and maintenance of UAS Andres Eduardo Parra Catama Air Safety Inspector Civil Aviation Authority of Colombia

JOINT AUTHORITIES FOR RULEMAKING OF UNMANNED SYSTEMS. Julia Sanchez on behalf of WG 1 Leader Benny Davidor 1

Commercial Aviation Safety Team (CAST)/ International Civil Aviation Organization (ICAO) Common Taxonomy Team (CICTT)

April 16, Erik Larson

Phases of a departure

Unmanned Aircraft System (UAS): regulatory framework and challenges. NAM/CAR/SAM Civil - Military Cooperation Havana, Cuba, April 2015

Application Guidance High-altitude Licence

NASA Aeronautics: Overview & ODM

Overview. Preface. Introduction 1

THE CHICAGO CONVENTION AS A SOURCE OF INTERNATIOINAL AIR LAW

Headquarters. Scotland. UK.

AIRSPACE STRUCTURE. In aeronautics, airspaces are the portion of the atmosphere controlled by a country above its territory.

ITALIAN MINISTRY OF DEFENCE Secretariat General for Defence - National Armaments Directorate AIR ARMAMENTS DIRECTORATE

4KM Purple Zone Maximum Flight Altitude 300 feet (90 metres) amsl (above mean sea level). See attachment for specific restrictions

PART 101--MOORED BALLOONS, KITES, UNMANNED ROCKETS AND UNMANNED FREE BALLOONS

Safety Enhancement SE ASA Design Virtual Day-VMC Displays

NASA s Role in Integration of UAVs

Airworthiness Regulatory Framework for Military Civil RPAS. Lt Col (Eng) Georgios Kokkalas

Review of the Space Shuttle Program

Panel Session V - X-Prize & Zero-G Briefing to the 4F1 Space Congress

Flight test organisation

Some thoughts on measurement technologies in the aerospace industry

Unmanned Aircraft and Balloons in Class E Airspace above FL600, Challenges and Opportunities

FAA Office of Commercial Space Transportation Activities Overview

Part 101, Amendment 7. Gyrogliders and Parasails, Unmanned Aircraft (including Balloons), Kites, and Rockets Operating Rules.

Testimony of Ms. Kelly Garehime Associate General Counsel - Regulatory Affairs United Launch Alliance, LLC (ULA)

NASA Connection Free-Fall Rides

Arianespace 2013 Organization, History and Programs

(a) This part prescribes rules governing the operation in the United States, of the following:

Glass Cockpits in General Aviation Aircraft. Consequences for training and simulators. Fred Abbink

January ,2015, Orlando, FL. Aviation Law and Insurance. Symposium. David K. Tochen General Counsel

The President s Commission on Implementation of US Space Exploration Policy

Transcription:

IAASS Commercial Human Spaceflight Safety By Tommaso Sgobba IAASS http://iaass.space-safety.org/ 17 February, 2014 STSC COPUOS - Vienna International Association for the Advancement of Space Safety 1

IAASS Introduction International Association for the Advancement of Space Safety 2

Growing importance of commercial space Today, referring to all space activities as exploration activities has become meaningless. Instead space should be considered as made of two functional regions: the region of spaceexploitation and the region of space-exploration. ( exploitation means making productive use, while exploration means, traveling,over new territory, for adventure, discovery or investigation). The border between the two regions lays currently at the upper end of the geosynchronous orbits (36,000 km). The interests in the space-exploitation region, are mainly commercial and military, while they are scientific in the space exploration region.

A fading divide Several soft boundaries between air and space have been defined: - 50 Km is the upper limit of atmospheric buoyancy (balloons); - 80 Km is the threshold altitude that defines astronauts in the US; - 100 Km, also known as the Karman Line, is where aircraft aerodynamic controls become ineffective; - 120 Km begins the re-entry threshold for space vehicles; and, - 160 Km is the lowest practical operating orbit for satellites and spacecraft. Although the Karman-line, the 100 km separation between the field of aeronautics and that of astronautics, has been recognized for the application of national space-related regulations by some countries such as Australia, currently there is no legally defined boundary mentioned in international aeronautical conventions and space treaties.

A fading divide: the benefits Important elements of aviation infrastructure and services (air traffic control, communication meteorology) are becoming space-based. Vehicles are being developed that will operate in both domains.

A fading divide: the risks There are common concerns like space weather, sharing of airspace during launch and reentry operations, protection of the atmospheric and orbital environment (space debris). A large part of space launch and re-entry operations take place through the international airspace under the ICAO jurisdiction.

The Shuttle Columbia s aviation close call The disintegration during re-entry of the Shuttle Columbia on February 1, 2003 was a watershed moment in the history of re-entry safety. It highlighted the need to establish preplanned measures to keep air traffic away from falling debris if a re-entry accident occurs. About 100,000 fragments were recovered for about 40% of the original weight.

Suborbital spaceflight Unmanned suborbital flights have been common since the very beginning of the space age. A suborbital flight is a flight beyond 100 kilometers above sea level but in which the vehicle does not attain the speed to escape Earth's gravity field (40,320 kph). ESA unmanned suborbital rockets -credits: ESA/G. Dechiara

First suborbital human spaceflights half century ago In 1961, Alan Sheppard on a suborbital flight reached 187 km of altitude on board the first Mercury man-rated rocket (Mercury Redstone 3, a rocket with a capsule on top). In 1963, NASA test pilot Joseph Walker reached an altitude of 108 km in an -15 aircraft, and returned to the runway from which he took off (attached to a B-52 mother ship). The commercial human suborbital space vehicles currently in development still basically follow such configurations, plus other two consisting into an airplane with either a rocket engine or jet engine and rocket engine.

IAASS Current developments International Association for the Advancement of Space Safety 10

SpaceShipTwo(SS2) Company: The Spaceship Company Vehicle Operation Winged, hybrid rocket engine, Mach 4 - Air-launched at 15,000m by jet-powered Scaled Composites WhiteKnightTwo aircraft - horizontal landing Mission Sub-orbital flights, 2 pilots, 6 pax Spaceport Mojave Spaceport, California (USA) Launches 2014, start of commercial operations Safety certification authority: FAA for public launch/re-entry public safety

Lynx Company: COR Vehicle Operation Winged, 4 LO-Kerosene rocket engines, Mach 3.5 Horizontal take off and landing Mission - Sub-orbital flights, 1 crew, 1 pax - Small satellites orbital Spaceport - Mojave Spaceport, California (USA) - Caribbean Spaceport, Curacao Launches (NL) 2014, start of commercial operations Safety certification authority: FAA for public launch/re-entry public safety

Company: Space Dragon Vehicle Capsule Operation Ground launched by Falcon 9 rocket Payloads Spaceport - Crew (7) orbital (LEO) - Cargo - Launched from Cape Canaveral Air Force Station - Splashdown landing Tests Drop and abort test end 2013

Company: Sierra Nevada & Lockheed- Martin Dream Chaser Vehicle Launch Operation Payloads Winged Lifting body Ground launched by Atlas V rocket - Crew (2-7) orbital (LEO) - Cargo Spaceport - Launched from US launch range - Landing at NASA-KSC Glide Tests October- November 2013 Piloting Unmanned or Manned Safety certification authority: - NASA for human spaceflight - FAA for launch/re-entry

Company: Boeing & Bigelow Aerospace CST 100 Vehicle Operation Payloads Spaceport Tests Capsule Ground launched by Atlas V rocket, (Delta IV, Falcon 9) - Crew (7) orbital (LEO) - Mixed crew and cargo - Launched from LC 41, Cape Canaveral Air Force Station - Splashdown landing Subsystems test on going

New Shepard Company: Blue Origin Vehicle Operation Payloads Spaceport Tests - Capsule powered by High Test Peroxide (HTP) and RP-1 kerosene. - Propulsion Module, with reusable liquid oxygen, liquid hydrogen - Ground launched by rocketpowered Propulsion Module rocket engines - Propulsion Module lands vertically (VTVL) - Capsule lands with parachute Crew (3) suborbital - Launched from LC 39A, Cape Canaveral Air Force Station Launch, landing and escape systems tests performed in 2012

Company: Reaction Engines Skylon Vehicle Operation Mission Winged, 2 SABRE engines mix hydrogen jet and LO-hydrogen rocket engine, Mach 5,4 as jet Single-stage-to-orbit, horizontal take off and landing - Orbital & sub-orbital flights, - Small satellites orbital Airport TBD Tests Flight tests 2020 Safety certification authority: UK CAA

Swiss Space System (S3) Company: Swiss Space Systems Vehicle Operation Mission Airport Winged lifting body Air launched from Airbus A300 - Sub-orbital Intercontinental flights - Small Satellites Orbital - Payerne Airport (CH) - Malaysia - Morocco Tests Flight tests 2017 Safety certification authority: EASA (TBC)

Vinci Spaceplane Company: EADS - Astrium Vehicle Operation Winged, Mach 3, 20 tons Double propulsion: jet engines, cryogenic methane/oxygen rocket engine Horizontal take off and landing Mission - Sub-orbital manned, 6 pax, 2 crew - Small satellites launch Airport TBD Developmen t Status Studies Safety certification authority: EASA

Company: Dassault VSH Vehicle Winged lifting body, Mach 3.5 Propulsion Lox/Kero, 11 tons Launch Operation Mission - Air launched - Horizontal landing Sub-orbital manned, 6 pax Airport Developmen t Status TBD Studies Safety certification authority: EASA ( as a high performance aircraft)

Company: Copenhagen Suborbital TychoDeepSpace II Vehicle Launch Operation Payloads Spaceport Capsule Sea launched by HEAT 1600 rocket Sub-orbital TBD Developmen t Tests On-going, including tests of the escape system Safety certification authority: TBD

IAASS Safety International Association for the Advancement of Space Safety 22

Historical safety records Capsule configuration - The available (statistically significant) safety record for capsule configuration is that of Russian Soyuz (orbital vehicle). As of beginning of 2013 there have been 115 manned Soyuz launches with 4 failures in total: 2 during launch with no casualty (thanks to the activation of the abort systems), and 2 at re-entry with 3 casualties in total. Air-launched configuration On a total of 199 flights -15 flights there were 1 engine failure and 1 engine explosion with damages at landing (no casualty), and 1 crash with 1 casualty. -15 Suborbital spaceflight safety target The IAASS considers that a quantitative safety target of 1 accident per 10,000 flights may be achievable in current suborbital vehicle developments by using proven, well understood and reliable rocket propulsion technologies, application of best safety practices from past and current aeronautical and space projects, performance of wide ground and flight testing program, and rigorous quality control program.

Suborbital vehicles top-risks Design Risk Carrier malfunction Capsule Air launche d Rocket propulsio n Winged system Explosion Launcher malfunction Inadvertent release or firing Loss of pressurization Loss of control at reentry Parachute system failure Crash landing Escape system failure Falling fragments (catastrophic failure) Leaving segregated airspace Atmospheric pollution

It is a rocket or an airplane? A space vehicle needs rocket propulsion to travel in vacuum. But a vehicle like a car or an airplane which uses rocket propulsion to accelerate on ground or in air is not a space vehicle! Since WWII there have been several types of (military) planes that have made use of rockets during take-off (RATO). C-130 RATO Parabolic flight A person on a space vehicle orbiting Earth will experience weightlessness, but you can experience weightlessness also on a free fall or on an aircraft performing a parabola. Space agencies usually use aircraft parabolic flights to test equipment and train astronauts. Most commercial human suborbital systems currently in development are essentially high-performance aircraft that use rocket propulsion to accelerate in air (rocket burn-out around an altitude of 60 km) while in a parabolic flight.

Airspace safety considerations Rocket powered unmanned and manned systems (see Shuttle) traditionally include a destructive FTS to prevent departure from segregated airspace or flight path in case of malfunctioning. The suborbital winged systems currently in development do not include a FTS. Furthermore, under US law, there are no regulations levied for the safety of passengers and crew, but only for the protection of the uninvolved, public. It is IAASS recommendation that unregulated suborbital human spaceflight should be treated according to the same safety rationale being adopted for allowing civil UAVs in the airspace (i.e. a number of safety requirements apply in any case). In addition, any original aeronautical certification of equipment and systems should be considered invalid due to exposure to vacuum (e,g, jet engines)

Conclusions: The time to organize space is now! Adopt the International Code of Conduct for Space Operations, but separate military Space Situational Awareness (SSA) issues from civil/commercial Space Traffic Management (STM). Define borders and interfaces between military SSA and civil/commercial STM. Enlarge national launch authorities mandates (e.g. FAA-AST) to include commercial onorbit space operations licensing, and civil/commercial STM services. Work with ICAO to Integrate Air Traffic Management and Space Traffic Management in a single international system Launch inter-government cooperation for creating international voluntary space safety standards.

Acknowledgments This presentation is based to a large extend on the results of the IAASS Study Working Group An ICAO for Space? I co-chaired with Prof. Ram Jakhu of the McGill University, Institute of Air and Space Law. The complete results of the IAASS study are collected in the book The Need for an Integrated Regulatory Regime for Aviation and Space sponsored by ESPI (European Space Policy Institute), co-edited by R. Jakhu, T. Sgobba and P. Dempsey, and published by Springer in 2011.

Acknowledgments This presentation is based to a large extend on the results of the IAASS Study Working Group An ICAO for Space? I co-chaired with Prof. Ram Jakhu of the McGill University, Institute of Air and Space Law. The complete results of the IAASS study are collected in the book The Need for an Integrated Regulatory Regime for Aviation and Space sponsored by ESPI (European Space Policy Institute), co-edited by R. Jakhu, T. Sgobba and P. Dempsey, and published by Springer in 2011.