Single and mass avalanching. Similarity of avalanching in space.

Similar documents
FRANCE : HOW TO IMPROVE THE AVALANCHE KNOWLEDGE OF MOUNTAIN GUIDES? THE ANSWER OF THE FRENCH MOUNTAIN GUIDES ASSOCIATION. Alain Duclos 1 TRANSMONTAGNE

Discriminate Analysis of Synthetic Vision System Equivalent Safety Metric 4 (SVS-ESM-4)

QUANTIFYING THE OBVIOUS: THE AVALANCHE DANGER LEVEL

UC Berkeley Working Papers

THRESHOLD GUIDELINES FOR AVALANCHE SAFETY MEASURES

NivoTest : a personal assistant for avalanche risk assessment

Advanced Flight Control System Failure States Airworthiness Requirements and Verification

Accuracy of Flight Delays Caused by Low Ceilings and Visibilities at Chicago s Midway and O Hare International Airports

Simulation of disturbances and modelling of expected train passenger delays

Predicting a Dramatic Contraction in the 10-Year Passenger Demand

ScienceDirect. Aircraft parking stands: proposed model for Indonesian airports

Typical avalanche problems

G. Glukhov The State Scientific Research Institute of Civil Aviation, Mikhalkovskaya Street, 67, building 1, Moscow, Russia

Depeaking Optimization of Air Traffic Systems

CHAPTER 4: PERFORMANCE

MEASURING ACCESSIBILITY TO PASSENGER FLIGHTS IN EUROPE: TOWARDS HARMONISED INDICATORS AT THE REGIONAL LEVEL. Regional Focus.

Controlled Cooking Test (CCT)

Impact of Landing Fee Policy on Airlines Service Decisions, Financial Performance and Airport Congestion

ScienceDirect. Prediction of Commercial Aircraft Price using the COC & Aircraft Design Factors

The Hamburger. by Benjamin Wing Will Bullock Ted Kocak

Proceedings, 2012 International Snow Science Workshop, Anchorage, Alaska

MURMANSK REGION THE REGION WITH RICH TOURISM POTENTIAL

Guidelines for Snow Avalanche Risk Determination and Mapping. David McClung University of British Columbia

Proceedings, International Snow Science Workshop, Innsbruck, Austria, 2018

Motion 2. 1 Purpose. 2 Theory

SIM Selection and peer-review under responsibility of SIM 2013 / 12th International Symposium in Management.

Research on Pilots Development Planning

Modeling Air Passenger Demand in Bandaranaike International Airport, Sri Lanka

An Analysis of Dynamic Actions on the Big Long River

The search results explanations of hydrological data

VISITOR RISK MANAGEMENT APPLIED TO AVALANCHES IN NEW ZEALAND

GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN. By Syed Naseem Abbas Gilany

A GEOGRAPHIC ANALYSIS OF OPTIMAL SIGNAGE LOCATION SELECTION IN SCENIC AREA

TRENDS IN MAXIMUM AND MINIMUM TEMPERATURE IN THE CENTRAL ANDES OF PERU (MANTARO RIVER BASIN)

Quantitative Analysis of the Adapted Physical Education Employment Market in Higher Education

Performance Indicator Horizontal Flight Efficiency

Airspace Complexity Measurement: An Air Traffic Control Simulation Analysis

Avalanches and the Mount Whitney Basin

PRAJWAL KHADGI Department of Industrial and Systems Engineering Northern Illinois University DeKalb, Illinois, USA

Understanding Travel Behaviour in Avalanche Terrain: A New Approach

THE PROBABILICTIC APPROACH TO MODELLING OF AN OPTIMAL UNDERWATER PIPELINE ROUT UNDER IMPACT OF HUMMOCKS

Statistical Evaluation of Seasonal Effects to Income, Sales and Work- Ocupation of Farmers, the Apples Case in Prizren and Korça Regions

CONCEPTUAL FOUNDATIONS OF CONSTRUCTION OF THE MODELS AND PROCEDURES FOR PREDICTION OF THE AVALANCHE-DANGEROUS SITUATIONS INITIATION

Accident Prevention Program

Predicting Flight Delays Using Data Mining Techniques

The Potentially Dangerous Glacial Lakes

An Econometric Study of Flight Delay Causes at O Hare International Airport Nathan Daniel Boettcher, Dr. Don Thompson*

Proceedings, International Snow Science Workshop, Banff, 2014

HOW TO IMPROVE HIGH-FREQUENCY BUS SERVICE RELIABILITY THROUGH SCHEDULING

Exemplar for Internal Achievement Standard Geography Level 1. Conduct geographic research, with direction

International Journal of Science Vol.4 No ISSN:

Ski / Sled tracks as an expression of avalanche risk Jordy Hendrikx 1 & Jerry Johnson 2,1 1.

Somchanok Tiabtiamrat* and Supachok Wiriyacosol ABSTRACT

Coverage of Mangrove Ecosystem along Three Coastal Zones of Puerto Rico using IKONOS Sensor

ENVIRONMENTAL HAZARDS OF AVALANCHES: PRELIMINARY RESEARCH IN GLACIER NATIONAL PARK

Massey Hall. 178 Victoria St, Toronto, ON M5B 1T7. CAP Index, Inc. REPORT CONTENTS. About CAP Index, Inc. 3-Mile Methodology. 3 Tract Map.

Comparative Assessments of the Seasonality in "The Total Number of Overnight Stays" in Romania, Bulgaria and the European Union

Supplementary Materials Figures

Air Traffic Flow Management (ATFM) in the SAM Region METHODOLOGY ADOPTED BY BRAZIL TO CALCULATE THE CONTROL CAPACITY OF ACC OF BRAZILIAN FIR

Unit 6: Probability Plotting

A high resolution glacier model with debris effects in Bhutan Himalaya. Orie SASAKI Kanae Laboratory 2018/02/08 (Thu)

Assessment of Pathogen Strategies

THE IMPACTS OF CLIMATE CHANGE ON SKI RESORTS AND TOURIST TRAFFIC. M. Tepfenhart, W. Mauser and F. Siebel

Mapping the Snout. Subjects. Skills. Materials

Dr. Dimitris P. Drakoulis THE REGIONAL ORGANIZATION OF THE EASTERN ROMAN EMPIRE IN THE EARLY BYZANTINE PERIOD (4TH-6TH CENTURY A.D.

SAMTRANS TITLE VI STANDARDS AND POLICIES

Avalanche Awareness and Leading a Companion Rescue

WHEN IS THE RIGHT TIME TO FLY? THE CASE OF SOUTHEAST ASIAN LOW- COST AIRLINES

BLASTING GLACIAL ICE AND SNOW ABSTRACT

Proceedings, International Snow Science Workshop, Breckenridge, Colorado, 2016 ANALYSIS OF UTAH AVALANCHE FATALITIES IN THE MODERN ERA

Wake Turbulence Research Modeling

EXPERIMENTAL ANALYSIS OF THE INTEGRATION OF MIXED SURVEILLANCE FREQUENCY INTO OCEANIC ATC OPERATIONS

Content. Study Results. Next Steps. Background

A GIS Analysis of Probable High Recreation Use Areas in Three Sisters Wilderness Deschutes and Willamette National Forests

The Improvement of Airline Tickets Selling Process

OPTIMAL PUSHBACK TIME WITH EXISTING UNCERTAINTIES AT BUSY AIRPORT

Settlement Patterns West of Ma ax Na, Belize

ALLOMETRY: DETERMING IF DOLPHINS ARE SMARTER THAN HUMANS?

AN AVALANCHE CHARACTERIZATION CHECKLIST FOR BACKCOUNTRY TRAVEL DECISIONS. Roger Atkins* Canadian Mountain Holidays

Intra-Urban Land Cover Classification in High Spatial Resolution Images using Object-Oriented Analysis: trends and challenges

Comparison on the Ways of Airworthiness Management of Civil Aircraft Design Organization

Department of Textile Technology

German Meteorological Service. The quality of AMPS-Wind-Forecasts with regards to flight operations at Dronning Maud Land Season 2010/2011

Wingsuit Design and Basic Aerodynamics 2

Analysis of en-route vertical flight efficiency

Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau

Self-Guided Group Organization - Recommendations

Appendix B Ultimate Airport Capacity and Delay Simulation Modeling Analysis

Blocking Sea Intrusion in Brackish Karstic Springs

A Multilayer and Time-varying Structural Analysis of the Brazilian Air Transportation Network

Airport Monopoly and Regulation: Practice and Reform in China Jianwei Huang1, a

NATIONAL REPORT OF THE UNITED REPUBLIC OF TANZANIA ON SEA LEVEL STATUS

FOR LARGE DESIGN WAVE HEIGHTS

Visual and Sensory Aspect

Pump Fillage Calculation (PFC) Algorithm for Well Control

COMPARATIVE STUDY ON WOODEN HOUSE DAMAGE BETWEEN 1995 KOBE EQRTHQUAKE AND 2000 TOTTORI EARTHQUAKE OF JAPAN

Flight management during Concordiasi campaign

DEVELOPMENT OF SOURCE REDUCTION TECHNOLOGIES AND PROCEDURES ATA / ACI-NA DEICING MANAGEMENT CONFERENCE WASHINGTON, DC JULY 25, 2008

ARPA Veneto- Centro Valanghe di Arabba, Via Pradat, Arabba (BL),Italy 2

5 MAP SPECIFICATION FOR SKI-ORIENTEERING

Transcription:

Single and mass avalanching. Similarity of avalanching in space. Pavel Chernous* Center for Avalanche Safety, "Apatit" JSC, Kirovsk, Russia ABSTRACT: Sometimes it is possible to observe only single avalanche release in a big area with numerous avalanche paths, but sometimes avalanches occur in many avalanche paths in the same area almost simultaneously. Why is that? It is clear that for multiple avalanche releases conditions in which they occur should be very similar. Probabilities of simultaneous avalanching in different avalanche paths and conditional probabilities of avalanche release P(i/j) in an avalanche path i if the avalanche occurred in an avalanche path j can be an indexes of these conditions similarity. Data of long-term avalanche observations in the Khibiny Mountains were used to assess the mentioned probabilities. Statistical significances of the obtained assessments were tested and analogues avalanche paths were identified. Generally speaking the most of the conditional probabilities are very low. Maximal probabilities were 0.5 0.6 for closely spaced avalanche starting zones. Probabilities of mass avalanche release in the area decrease sharply with the number of avalanche paths where avalanches occur. Attempts to determine the analogue avalanche paths (starting zones) on a base of their morphometric characteristics were not successful. Nevertheless the obtained probabilities P(i/j) and P(i/j n ) conditional probabilities of avalanche release in the avalanche path i if avalanche release in the avalanche path j did not occur, can be useful for avalanche release probability assessment in the avalanche path i if information about avalanche probability in the avalanche path j has been obtained. For example, it can be done on a base of a mechanical stability model and statistical simulation. KEYWORDS: avalanches, mass avalanching, similarity of avalanching in space. 1 INTRODUCTION Observing avalanches in the mountains it can be noted that sometimes avalanches occur only in one avalanche path but sometimes work a few ones. Naturally to assume that the similar conditions, controlling avalanche formation, lead to similar avalanching, i.e. there are common patterns of the conditions avalanche and non-avalanche for some avalanche starting zones (avalanche paths). Snow stability conditions are controlled by many types of the factors: snow, meteorological, geomorphologic, vegetation, etc. The geomorphologic factors are the most stable and obvious. Everyone, just by looking at avalanche starting zones, can say these are similar, but those are not. A lot of quantitative data on form and geometric parameters of the slopes, their orientation, vegetation, etc. can be obtained with maps. * Corresponding author address: Pavel Chernous, Center for Avalanche Safety, Apatit JSC, 33a, 50 Years of October St., Kirovsk, Murmansk Region, 184250 Russia; tel: +7 815 3196230; fax: +7 815 3196200; email: pchernous@phosagro.ru However, how this similarity is reflected in the similarity of the snow instabilities and avalanching nobody really can say. Besides relief current weather and evolution of snow on the slopes are also important, as well as vegetation, seismicity, anthropogenic impact, etc. These factors are not so obvious and require special measurements and their processing to assess their similarity in particular avalanche paths.the most of these factors are interdependent and a task to work out a model taking into account all of them on avalanching in particular avalanche paths to predict mass avalanching is extremely complex and can be a goal for future studies. This work is just an attempt to assess relations between single and multiple (mass) avalanching in a mountain area statistically. The Khibiny Mountains were chosen for this purpose since the longest period of avalanche observations in Russia was available for them. 2 DATA AND METHODS The Khibiny Mountains are located in the middle of the Kola Peninsula in European part of Russia, beyond Polar Circle. They are not too high, have plateaus tops and steep slopes. The 285

Center for Avalanche Safety, "Apatit" JSC (CAS) operates there since 1936. An avalanche catalogue of the CAS was used as a data source for this work. All avalanche paths chosen for the study are located in a rectangle of 4 5 km 2.The catalogue contains records about 6565 avalanches in this area from 1935 to 2010. Total number of avalanche paths with at least one avalanche registered from 1935 to 2010 was 69. Since during the observation period the avalanche starting zones of some avalanche paths were significantly destroyed by mining works and due to avalanche release observation irregularities for some paths, caused different reasons, they were excluded from consideration. Only avalanches in the catalogue with an exact day of release were taken into account. Totally 5373 avalanches in 54 avalanche paths were chosen. It is about 82% of all registered avalanches and 78% of total number existing avalanche paths in the analyzed area (Appendix 1). Data on the avalanche paths and their starting zones were used in the form in which they exist in the catalogue. We do not used strict definition for avalanche path outlining, but used historical spatial borders as they were shown in the avalanche path catalogue. Some avalanche paths have a few avalanche starting zones. Mean steepness of the starting zones is about 33 and ranges from 26 to 41 and their areas are from 16000 m 2 to 570000 m 2. All the starting zones are in the range from 350 to 1010 m.a.s.l. Forms of the avalanche starting zones surface are quite different: plane slope, slope with transverse and longitudinal concavity, narrow crevice and slope of complex shape. Some of the starting zones are adjacent to plateau-like tops and some to the ridges. Surface of the starting zones is relatively smooth sometimes with rocky ledges and scree, partly covered with moos and lichen in the high parts and covered with scrub in the lower parts. The most of the avalanche releases (80%) in the region are occurred during snow storms or soon after them. Frequencies of different intensity avalanching were used as assessments of their probabilities. To evaluate correlation between avalanching in different avalanche paths conditional probabilities P(i/j) were used. Where: P(i/j) probability of avalanching in avalanche path i if avalanching took place in avalanche path j. The avalanching in avalanche paths i and j should occurred in same days. For greater accuracy the assessments of P(i/j) have been carried only for avalanche paths with more than 20 registered avalanche days. 3 RESULTS AND DISCUSSION As statistical processing of the data demonstrated, mass avalanching in the Khibiny Mountains is a rare phenomenon. For 75 years of avalanche observations 2037 avalanche days took place. The biggest mass avalanching when 14 avalanche paths (26% of all considered avalanche paths) were active occurred one time - 15.12.1991. In the same period 13 avalanche paths were active in one day 3 times, 12 avalanche paths 1 time, 11 avalanche paths 2 times and 10 avalanche paths 6 times respectively. In the most avalanche days ( 56% of the total) was active only one of all avalanche paths. The quantity of avalanche days with a few active avalanche paths sharply drops with their number (Figure 1). Thus, avalanching, when more than 25% of all avalanche paths in the Khibiny Mountains worked in same day, occurred only one time in 75 years and the avalanching in more than 20% of all avalanche paths was on the average one time per 10 years. Almost all the avalanches occurred in days with mass avalanching were classified as snowstorm avalanches according with Akkuratov s (Аккуратов, 1959) genetic classification. There were also avalanche days with avalanching in a few avalanche paths when small insolation avalanches (Аккуратов, 1959) took place. Figure 1. Distribution of avalanche days number on gradations of number of active avalanche paths per day. Assessments of probabilities P(i/j) have very small values for the most pairs of avalanche paths (see appendix 2). Maximum P(i/j) value is 0.63. Less than 6% of all possible combinations P(i/j) are equal or larger than 0.2 and only about 1.5% are equal or larger than 0.4. It means that the avalanching is a very specific and spatially inhomogeneous process. The most of the avalanche paths in the pairs with relatively high P(i/j) values are very close to each other or even have a common borders of the avalanche starting zones (see Appendixes 1 and 2). Avalanche paths 3-10 (Appendix 1) show the 286

most similar avalanching. These paths have similar forms, aspects and inclination of avalanche starting zones and differences in areas. Because of this and taking into account that all the avalanche paths threaten to the crossing them railroad, more or less homogeneous sets of avalanche and non avalanche situations were composed and used for determination a linear discriminant function between avalanche and non avalanche situations for this part of the railroad (Черноус, 1975). Attempts to discriminate situations for the whole area were not as successful as for this small area because of spatial heterogeneity of the snow instabilities and avalanching. Obtained conditional probabilities can be used as a criterion for composing of relatively homogeneous data sets of avalanche and non avalanche situations for groups of avalanche paths. Then these data sets can be used for working out of the decision rules for avalanche forecasting. Avalanche paths j with high probabilities P(i/j) can be also used as indicators of possible avalanching in other avalanche paths. For example, if probability of avalanche release in avalanche path j - P(j), then probability of avalanche release in avalanche path i - P(i) is equal: P(i) = P(i/j)P(j) + P(i/j n )[1 P(j)] (1) where: P(i/j n ) - conditional probability of avalanche release in the avalanche path i if avalanche in the avalanche path j did not occur. Probabilities P(j) can be assessed with a mechanical stability model and statistical simulation (Chernous and Fedorenko, 2001). The second term in (1) can be neglected because of very small P(i/j n ) values. Due to accuracy reason only enough big P(i/j) should be used in (1) for P(i) calculation. refinement of avalanche forecasts in space (although to a limited extend). 5 ACKNOWLEDGMENTS I am sincerely grateful to Olga Tyapkina for the help in data preparing and processing. 6 REFERENCES Chernouss, P., 1995. Spatial and time variability of avalanche predictors and accuracy of teir estimation. In: F. Sivardiere (Editor), Les apports de la recherché scientifique a la securite neige, glace et avalanche. Actes de Colloque, Chamonix, France, 123-127. Chernouss P.A., Fedorenko Yu.V. 2001. Application of statistical simulation for avalanche-risk evaluation. Ann. Glaciol., 32, 182-186. Judson A., 1983. On the potential use of index paths for avalanche assessment. J. Glaciology, 29 (101), 178-184. Аккуратов В.Н. 1959. Генетическая классификация лавиню Труды Эльбрусской высокогорной комплексной экспедиции, т. 1(4). Нальчик, 215-232. Черноус П. А. 1975 Применение многомерного дискриминантного анализа для распознавания лавиноопасных ситуаций. В кн.: Исследования снега и лавин в Хибинах. Л., Гидрометеоиздат, 64-70. (j) 4 CONCLUSIONS The study shows that spatial variability of avalanching in the Khibiny Mountains is very high. The main reason of this variability is very high multi-scale variability of the snow characteristics controlling its stability (Chernouss, 1995). Such a big variability of avalanching means that value of background avalanche forecasts is very low. Perhaps they are more valuable in other conditions, primarily with calm weather without strong winds and intensive snow drift. For example for the mountains in Colorado, USA with continental climate P(i/j) probabilities more higher (Judson, 1983). But even in very variable snow conditions of the Khibiny Mountains spatial similarity of avalanching exists and can be used for 287

Map of the study area. 1 avalanche starting zone border; 2 number of avalanche path; 3-8 numbers of avalanche paths in groups with similar avalanching. Appendix 1. 288

Appendix 2 Table of conditional probabilities P(i/j). P(i/j) avalanche release probability for the avalanche path i, if avalanche release has occurred in the avalanche path j. j i 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1,00 0,03 0,10 0,14 0,09 0,01 0,04 0,00 0,07 0,06 0,46 0,05 0,03 2 0,11 1,00 0,52 0,52 0,27 0,06 0,30 0,02 0,24 0,16 0,11 0,13 0,13 3 0,10 0,17 1,00 0,48 0,31 0,04 0,29 0,03 0,26 0,12 0,14 0,08 0,07 4 0,13 0,14 0,40 1,00 0,33 0,04 0,25 0,02 0,24 0,11 0,14 0,07 0,07 5 0,09 0,08 0,29 0,37 1,00 0,05 0,39 0,06 0,34 0,14 0,13 0,10 0,08 6 0,10 0,20 0,40 0,50 0,55 1,00 0,35 0,20 0,35 0,15 0,20 0,10 0,05 7 0,04 0,08 0,23 0,23 0,32 0,03 1,00 0,04 0,31 0,15 0,09 0,09 0,09 8 0,04 0,04 0,19 0,19 0,46 0,15 0,42 1,00 0,08 0,19 0,08 0,15 0,04 9 0,08 0,08 0,27 0,30 0,38 0,04 0,41 0,01 1,00 0,23 0,12 0,06 0,07 10 0,13 0,11 0,25 0,29 0,33 0,03 0,42 0,06 0,47 1,00 0,15 0,09 0,11 11 0,33 0,02 0,09 0,11 0,09 0,01 0,07 0,01 0,08 0,04 1,00 0,04 0,04 12 0,07 0,06 0,11 0,11 0,14 0,01 0,16 0,03 0,08 0,06 0,09 1,00 0,29 13 0,08 0,10 0,15 0,18 0,19 0,01 0,25 0,01 0,15 0,12 0,13 0,49 1,00 14 0,05 0,01 0,05 0,05 0,16 0,01 0,12 0,03 0,09 0,04 0,05 0,18 0,03 15 0,03 0,03 0,05 0,07 0,08 0,01 0,07 0,01 0,06 0,01 0,06 0,15 0,13 16 0,05 0,03 0,08 0,08 0,10 0,01 0,11 0,00 0,07 0,03 0,10 0,11 0,12 17 0,02 0,05 0,14 0,08 0,11 0,02 0,08 0,00 0,08 0,02 0,03 0,22 0,13 18 0,09 0,05 0,07 0,04 0,07 0,00 0,05 0,00 0,05 0,00 0,09 0,23 0,11 19 0,06 0,03 0,11 0,13 0,11 0,00 0,13 0,00 0,10 0,05 0,12 0,05 0,05 20 0,02 0,00 0,06 0,04 0,06 0,00 0,09 0,00 0,06 0,05 0,06 0,06 0,03 21 0,16 0,02 0,08 0,11 0,07 0,02 0,08 0,01 0,09 0,05 0,18 0,04 0,03 22 0,24 0,04 0,20 0,24 0,14 0,00 0,14 0,00 0,13 0,10 0,28 0,08 0,10 23 0,04 0,04 0,04 0,08 0,04 0,00 0,13 0,00 0,17 0,04 0,08 0,08 0,13 24 0,06 0,03 0,12 0,13 0,10 0,00 0,14 0,00 0,15 0,08 0,11 0,03 0,06 25 0,05 0,02 0,07 0,10 0,07 0,00 0,10 0,00 0,10 0,05 0,10 0,10 0,07 26 0,00 0,00 0,05 0,15 0,10 0,00 0,10 0,00 0,05 0,05 0,00 0,05 0,05 27 0,04 0,00 0,00 0,02 0,02 0,00 0,04 0,00 0,00 0,04 0,00 0,02 0,02 28 0,14 0,09 0,14 0,14 0,14 0,00 0,27 0,05 0,00 0,09 0,09 0,23 0,09 29 0,09 0,02 0,14 0,16 0,11 0,02 0,09 0,02 0,11 0,02 0,09 0,16 0,02 30 0,10 0,04 0,12 0,14 0,09 0,00 0,07 0,00 0,08 0,03 0,16 0,05 0,07 31 0,12 0,00 0,08 0,04 0,12 0,00 0,08 0,00 0,00 0,00 0,08 0,08 0,00 32 0,02 0,08 0,11 0,17 0,11 0,02 0,13 0,02 0,08 0,04 0,02 0,13 0,11 33 0,10 0,03 0,13 0,06 0,06 0,06 0,06 0,00 0,03 0,03 0,10 0,23 0,13 34 0,11 0,03 0,11 0,03 0,05 0,00 0,16 0,00 0,08 0,03 0,11 0,05 0,05 35 0,00 0,02 0,02 0,04 0,02 0,00 0,10 0,00 0,08 0,02 0,06 0,06 0,04 36 0,07 0,00 0,02 0,02 0,00 0,00 0,04 0,00 0,04 0,00 0,09 0,00 0,00 37 0,11 0,03 0,22 0,36 0,17 0,08 0,22 0,00 0,14 0,14 0,22 0,08 0,03 38 0,08 0,08 0,21 0,27 0,18 0,03 0,17 0,00 0,18 0,09 0,12 0,06 0,07 Total number days with avalanches 207 63 191 230 206 20 247 26 184 89 291 142 84 289

Appendix 2 Table of conditional probabilities P(i/j). P(i/j) avalanche release probability for the avalanche path i, if avalanche release has occurred in the avalanche path j. (Continuation). j i 14 15 16 17 18 19 20 21 22 23 24 25 26 1 0,02 0,02 0,04 0,00 0,02 0,08 0,01 0,14 0,08 0,00 0,03 0,01 0,00 2 0,02 0,06 0,08 0,05 0,05 0,14 0,00 0,05 0,05 0,02 0,05 0,02 0,00 3 0,02 0,03 0,07 0,05 0,02 0,15 0,04 0,07 0,07 0,01 0,06 0,02 0,01 4 0,02 0,03 0,06 0,02 0,01 0,15 0,02 0,08 0,07 0,01 0,06 0,02 0,01 5 0,06 0,04 0,08 0,03 0,02 0,15 0,03 0,06 0,05 0,00 0,05 0,01 0,01 6 0,05 0,05 0,05 0,05 0,00 0,05 0,00 0,15 0,00 0,00 0,00 0,00 0,00 7 0,04 0,03 0,07 0,02 0,01 0,14 0,04 0,06 0,04 0,01 0,06 0,02 0,01 8 0,08 0,04 0,00 0,00 0,00 0,04 0,00 0,04 0,00 0,00 0,00 0,00 0,00 9 0,04 0,04 0,07 0,03 0,02 0,14 0,04 0,08 0,05 0,02 0,08 0,02 0,01 10 0,03 0,01 0,06 0,01 0,00 0,15 0,06 0,10 0,08 0,01 0,09 0,02 0,01 11 0,01 0,02 0,05 0,01 0,02 0,11 0,02 0,11 0,07 0,01 0,04 0,01 0,00 12 0,10 0,12 0,13 0,10 0,09 0,08 0,04 0,05 0,04 0,01 0,02 0,03 0,01 13 0,02 0,18 0,24 0,10 0,07 0,15 0,04 0,07 0,08 0,04 0,07 0,04 0,01 14 1,00 0,18 0,14 0,08 0,03 0,17 0,05 0,03 0,03 0,01 0,01 0,03 0,00 15 0,12 1,00 0,63 0,16 0,09 0,11 0,04 0,03 0,02 0,00 0,03 0,02 0,00 16 0,07 0,44 1,00 0,19 0,07 0,10 0,05 0,04 0,02 0,01 0,04 0,02 0,00 17 0,09 0,30 0,48 1,00 0,23 0,14 0,03 0,02 0,03 0,03 0,02 0,02 0,00 18 0,04 0,20 0,20 0,27 1,00 0,11 0,02 0,02 0,05 0,05 0,04 0,00 0,00 19 0,05 0,05 0,06 0,03 0,02 1,00 0,09 0,10 0,05 0,02 0,05 0,04 0,01 20 0,04 0,05 0,07 0,02 0,01 0,22 1,00 0,12 0,04 0,02 0,10 0,02 0,00 21 0,01 0,02 0,03 0,01 0,01 0,15 0,08 1,00 0,03 0,02 0,06 0,03 0,01 22 0,03 0,03 0,06 0,03 0,04 0,17 0,06 0,07 1,00 0,01 0,06 0,03 0,01 23 0,04 0,00 0,04 0,08 0,13 0,17 0,08 0,13 0,04 1,00 0,04 0,00 0,00 24 0,01 0,04 0,07 0,01 0,02 0,13 0,11 0,11 0,04 0,01 1,00 0,00 0,00 25 0,05 0,05 0,10 0,02 0,00 0,24 0,05 0,12 0,05 0,00 0,00 1,00 0,27 26 0,00 0,00 0,00 0,00 0,00 0,15 0,00 0,05 0,05 0,00 0,00 0,55 1,00 27 0,00 0,00 0,00 0,00 0,00 0,20 0,10 0,16 0,04 0,00 0,06 0,26 0,12 28 0,05 0,09 0,09 0,09 0,05 0,05 0,00 0,14 0,09 0,00 0,05 0,00 0,00 29 0,07 0,05 0,05 0,05 0,02 0,09 0,02 0,02 0,00 0,02 0,02 0,00 0,00 30 0,02 0,02 0,07 0,03 0,02 0,17 0,10 0,08 0,02 0,01 0,03 0,02 0,01 31 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,08 0,08 0,00 0,00 0,00 0,00 32 0,04 0,06 0,08 0,02 0,02 0,06 0,02 0,04 0,04 0,00 0,02 0,02 0,00 33 0,03 0,13 0,13 0,13 0,10 0,00 0,00 0,03 0,00 0,00 0,00 0,00 0,00 34 0,05 0,00 0,03 0,00 0,03 0,03 0,05 0,03 0,13 0,00 0,03 0,00 0,00 35 0,02 0,00 0,10 0,08 0,04 0,04 0,04 0,02 0,02 0,02 0,02 0,02 0,00 36 0,04 0,00 0,02 0,02 0,02 0,02 0,00 0,07 0,02 0,00 0,00 0,02 0,00 37 0,03 0,00 0,00 0,00 0,00 0,08 0,00 0,19 0,06 0,03 0,11 0,00 0,00 38 0,02 0,02 0,06 0,02 0,03 0,15 0,02 0,05 0,06 0,03 0,07 0,00 0,01 Total number days with avalanches 77 116 166 64 56 264 108 172 71 24 98 41 20 290

Appendix 2 Table of conditional probabilities P(i/j). P(i/j) avalanche release probability for the avalanche path i, if avalanche release has occurred in the avalanche path j. (Continuation). j i 27 28 29 30 31 32 33 34 35 36 37 38 1 0,01 0,01 0,02 0,06 0,01 0,00 0,01 0,02 0,00 0,01 0,02 0,06 2 0,00 0,03 0,02 0,08 0,00 0,06 0,02 0,02 0,02 0,00 0,02 0,22 3 0,00 0,02 0,03 0,08 0,01 0,03 0,02 0,02 0,01 0,01 0,04 0,19 4 0,00 0,01 0,03 0,07 0,00 0,04 0,01 0,00 0,01 0,00 0,06 0,20 5 0,00 0,01 0,02 0,05 0,01 0,03 0,01 0,01 0,00 0,00 0,03 0,15 6 0,00 0,00 0,05 0,00 0,00 0,05 0,10 0,00 0,00 0,00 0,15 0,25 7 0,01 0,02 0,02 0,04 0,01 0,03 0,01 0,02 0,02 0,01 0,03 0,12 8 0,00 0,04 0,04 0,00 0,00 0,04 0,00 0,00 0,00 0,00 0,00 0,00 9 0,00 0,00 0,03 0,05 0,00 0,02 0,01 0,02 0,02 0,01 0,03 0,17 10 0,02 0,02 0,01 0,04 0,00 0,02 0,01 0,01 0,01 0,00 0,06 0,17 11 0,00 0,01 0,01 0,07 0,01 0,00 0,01 0,01 0,01 0,01 0,03 0,07 12 0,01 0,04 0,05 0,04 0,01 0,05 0,05 0,01 0,02 0,00 0,02 0,07 13 0,01 0,02 0,01 0,11 0,00 0,07 0,05 0,02 0,02 0,00 0,01 0,14 14 0,00 0,01 0,04 0,04 0,00 0,03 0,01 0,03 0,01 0,03 0,01 0,04 15 0,00 0,02 0,02 0,03 0,00 0,03 0,03 0,00 0,00 0,00 0,00 0,03 16 0,00 0,01 0,01 0,05 0,00 0,02 0,02 0,01 0,03 0,01 0,00 0,06 17 0,00 0,03 0,03 0,06 0,00 0,02 0,06 0,00 0,06 0,02 0,00 0,06 18 0,00 0,02 0,02 0,05 0,00 0,02 0,05 0,02 0,04 0,02 0,00 0,09 19 0,04 0,00 0,02 0,08 0,00 0,01 0,00 0,00 0,01 0,00 0,01 0,09 20 0,05 0,00 0,01 0,11 0,00 0,01 0,00 0,02 0,02 0,00 0,00 0,03 21 0,05 0,02 0,01 0,06 0,01 0,01 0,01 0,01 0,01 0,02 0,04 0,05 22 0,03 0,03 0,00 0,03 0,03 0,03 0,00 0,07 0,01 0,01 0,03 0,14 23 0,00 0,00 0,04 0,04 0,00 0,00 0,00 0,00 0,04 0,00 0,04 0,21 24 0,03 0,01 0,01 0,04 0,00 0,01 0,00 0,01 0,01 0,00 0,04 0,12 25 0,32 0,00 0,00 0,05 0,00 0,02 0,00 0,00 0,02 0,02 0,00 0,00 26 0,30 0,00 0,00 0,05 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,05 27 1,00 0,00 0,00 0,08 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,02 28 0,00 1,00 0,00 0,00 0,14 0,23 0,09 0,09 0,00 0,00 0,09 0,14 29 0,00 0,00 1,00 0,00 0,07 0,02 0,02 0,02 0,00 0,02 0,16 0,16 30 0,03 0,00 0,00 1,00 0,00 0,01 0,01 0,01 0,02 0,00 0,00 0,09 31 0,00 0,12 0,12 0,00 1,00 0,04 0,12 0,00 0,00 0,00 0,04 0,04 32 0,00 0,09 0,02 0,02 0,02 1,00 0,09 0,04 0,08 0,02 0,02 0,09 33 0,00 0,06 0,03 0,03 0,10 0,16 1,00 0,00 0,06 0,00 0,00 0,03 34 0,00 0,05 0,03 0,03 0,00 0,05 0,00 1,00 0,13 0,05 0,03 0,08 35 0,00 0,00 0,00 0,04 0,00 0,08 0,04 0,10 1,00 0,10 0,00 0,06 36 0,00 0,00 0,02 0,00 0,00 0,02 0,00 0,04 0,11 1,00 0,02 0,00 37 0,00 0,06 0,19 0,00 0,03 0,03 0,00 0,03 0,00 0,03 1,00 0,42 38 0,01 0,02 0,04 0,06 0,01 0,03 0,01 0,02 0,02 0,00 0,09 1,00 Total number days with avalanches 50 22 44 125 25 53 31 38 52 45 36 171 291