Gleim Airplane Transport Pilot FAA Knowledge Test 2011 Edition, 1st Printing Updates June 10, 2011

Similar documents
Gleim Commercial Pilot FAA Knowledge Test 2016 Edition, 1st Printing Updates - 2 July 2016

Gleim Airline Transport Pilot FAA Knowledge Test 2014 Edition, 1st Printing Updates May 2014

SUPPLEMENT A33 TO THE AIRPLANE FLIGHT MANUAL DA 40 NG. Integrated Avionics System Garmin G1000,

CESSNA SECTION 5 PERFORMANCE

Navigation Systems. 1. The Chart Supplement provides a listing of available VOR receiver ground checkpoints and VOTs (VOR receiver test facilities).

Santa Monica Flyers. Pre-Solo Knowledge Test. Aircraft Type to be flown solo:

Approach Specifications

PRESOLO WRITTEN EXAM

Advisory Circular (AC)

SUPPLEMENT A33 TO THE AIRPLANE FLIGHT MANUAL DA 62. Integrated Avionics System Garmin G1000 and. G1000 NXi, SBAS and P-RNAV Operation

Single Engine Instrument Training Record I PREFLIGHT PREPARATION WEATHER INFORMATION weather reports and forecasts. pilot and radar reports.

BFC KNOWLEDGE TEST. 4. What are wing-tip vortices (wake turbulence)? With which aircraft are they the greatest? Describe proper avoidance?

LESSON PLAN Introduction (3 minutes)

PBN Syllabus Aeroplane. Learning Objective. phase Theoretical PBN concept. in ICAO Doc 9613)

airplane rating, holds a multiengine land rating, and meets the recent flight experience of 14CFR for TO & LDGS in the preceding 90 days.

airplane rating, holds a multiengine land rating, and meets the recent flight experience of 14CFR for TO & LDGS in the preceding 90 days.

Figure 3.1. Foreign Airport Assessment Aid

Instrument Proficiency Check Flight Record

PBN Syllabus Helicopter. Learning Objective. phase Theoretical PBN concept. in ICAO Doc 9613)

Gleim Instrument Pilot FAA Knowledge Test 2015 Edition, 1st Printing Updates April 2015

GAR-AERO WHEEL ADAPTERS & TIRES

SUPPLEMENT 9 EASA CERTIFIED AIRPLANES

Valley Fliers 1402 Auburn Way North, #223 Auburn WA 98002

Intentionally left blank

Update to Instrument Rating Test June 2011 Instrument Rating Test Prep 2011

Cessna 182R Initial Quiz Tail: N2365C Engine manufacturer, RPM. 7. How many fuel system drains are there?, where are they located?

FAA Requirements for Engine-out Procedures and Obstacle Clearance

CHAPTER 2 AIRCRAFT INFORMATION SUMMARY TABLE OF CONTENTS

Instrument Multi Engine Practical Test Standards

(ii) Weight. Maximum gross weight for all tests, except where otherwise described in subparagraph (iii) below.

Instrument Study Guide

Pre-Solo Written Exam

USE OF RADAR IN THE APPROACH CONTROL SERVICE

CHAPTER 5 AEROPLANE PERFORMANCE OPERATING LIMITATIONS

INSTRUMENT RATING STUDENT RECORD

Gleim Private Pilot Syllabus Fifth Edition, 3rd Printing Updates March 2016

AERONAUTICAL INFORMATION CIRCULAR 18/18

Date Student Name Instructor Aircraft Make and Model Time in Aircraft Initial score corrected to AHRS: ADC: TIS: Terrain: TRK: DTK: VNAV:

STUDENT INFORMATION Name LAST FIRST MIDDLE Address City State ZIP Telephone. Pilot Cert. TYPE CERT # DATE ISSUED Emergency Contact Phone Relationship

Commercial Pilot Practical Test Briefing

AERONAUTICAL SURVEYS & INSTRUMENT FLIGHT PROCEDURES

Saint Petersburg-Clearwater International Airport. Airspace & Instrument Approach Analysis

Appendix E NextGen Appendix

EXPLANATION OF TPP TERMS AND SYMBOLS

CFIT-Procedure Design Considerations. Use of VNAV on Conventional. Non-Precision Approach Procedures

Garmin GNC 420 GPS Navigator with VHF COM

TABLE OF CONTENTS 1.0 INTRODUCTION...

SUPPLEMENT S06. Transport Canada Approved Flight Manual Supplement For GARMIN 400W/500W SERIES GPS WASS NAVIGATION SYSTEM

PBN Operational Approval Oceanic and Remote En Route Navigation Specifications

Taking your Pro Line 21 Hawker into NextGen airspace. Pro Line 21 INTEGRATED AVIONICS SYSTEM FOR HAWKER

Air Navigation Bureau ICAO Headquarters, Montreal

Private Pilot Practical Test Expanded Briefing

Gleim Private Pilot Flight Maneuvers Fifth Edition, 1st Printing October 2015

IFR SEPARATION WITHOUT RADAR

VFR GENERAL AVIATION FLIGHT OPERATION

Chapter 6. Nonradar. Section 1. General DISTANCE

FLIGHT REVIEW February 1, 2018

CESSNA 400 EQUIPPED WITH GARMIN G1000

APPENDIX X: RUNWAY LENGTH ANALYSIS

AERODROME OPERATING MINIMA

Head-up Guidance & Vision Technologies Enabling Safer and More Efficient Airline Operations

FLIGHT AND OPERATING MANUAL SUPPLEMENT FMS305902, REVISION 1 SEAPLANES WEST INC.

Taking your Pro Line 21 King Air into NextGen airspace. Pro Line 21 INTEGRATED AVIONICS SYSTEM FOR KING AIR

BFR WRITTEN TEST B - For IFR Pilots

3) There have some basic terminology of a flight plan and it is the fuel calculations

TWELFTH AIR NAVIGATION CONFERENCE

RNP 2 JOB AID REQUEST TO CONDUCT RNP 2 OPERATIONS

Flight Evaluation Schedule For GPS IFR Approval Primary Means Enroute, Terminal and Non-Precision Approach

CESSNA CITATION IIB PW JT15D-4 INTRODUCTION. Runway Analysis provides the means to determine maximum allowable takeoff and landing weights based upon:

PBN Airspace Design Workshop. Area Navigation. Asia and Pacific Regional Sub-Office Beijing, China. 5 May 2016 Page 1 APAC RSO BEIJING

Nav Specs and Procedure Design Module 12 Activities 8 and 10. European Airspace Concept Workshops for PBN Implementation

USE OF TAKEOFF CHARTS [B737]

Alpha Systems AOA Classic & Ultra CALIBRATION PROCEDURES

Runway Length Analysis Prescott Municipal Airport

Fly at the speed of ingenuity on your Learjet 85

Cessna Citation CE500 Series Training Course FOCUSED SINGLE PILOT EXEMPTION TRAINING PROGRAM

Advanced Transition Training

Gleim Private Pilot FAA Knowledge Test 2016 Edition, 1st Printing Updates April 2016

TEST PREP. Airline Transport Pilot

GACE 2017 GROUND TEST NAME DATE SCORE CHECKED BY: DATE CFI# Circle the correct answer or write in where applicable. Test will be corrected to 100%

ONE-ENGINE INOPERATIVE FLIGHT

Decisions on which type of approach to use vary with each airline, and sometimes even for each flight. aero quarterly qtr_02 10

All-Weather Operations Training Programme

Technology that Matters

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION. National Policy

Advisory Circular. Regulations for Terrain Awareness Warning System

New Engine Option (A330neo) airplanes. These airplanes will have a novel or unusual design

HXr - Instrument Approach Option Manual Supplement

TANZANIA CIVIL AVIATION AUTHORITY AIR NAVIGATION SERVICES INSPECTORATE. Title: CONSTRUCTION OF VISUAL AND INSTRUMENT FLIGHT PROCEDURES

Controller Training Case Study Implementation of new RNP AR APCH for RWY07 (North Circuit) at HKIA

OPERATIONAL USE OF ANGLE OF ATTACK ON MODERN COMMERCIAL JET AIRPLANES

AVIA 3133 INSTRUMENT PROCEDURES UNIVERSITY OF OKLAHOMA

NZQA registered unit standard version 2 Page 1 of 9. Demonstrate flying skills for an airline transport pilot licence (aeroplane)

NOISE ABATEMENT PROCEDURES

DA Aircraft Specifications and Limitations


Counselor s Name: Counselor s Ph #: 1) Do the following: a) Define "aircraft." Explain the operation of piston, turboprop, and jet engines.

Título ponencia: Introduction to the PBN concept

RFC Dallas, Inc. AIRCRAFT QUESTIONNAIRE

March 2016 Safety Meeting

Transcription:

Page 1 of 9 Gleim Airplane Transport Pilot FAA Knowledge Test 2011 Edition, 1st Printing Updates June 10, 2011 NOTE: Text that should be deleted from the outline is displayed with a line through the text. New text is shown with a blue background. Because new questions have been added to this product in previous updates, the question numbers here may not exactly match the numbers in your book. If you have trouble following along, please see the previous updates from December 6, 2010, March 21, 2011, and May 13, 2011. Study Unit 2 FAR Part 91, Civil Aviation Security, Hazardous Materials Page 43, Subunit 2.3, 10.a.: The following outline material is added to address a new FAA question dealing with hazardous materials. 10. Not more than 50 lb. of hazardous materials may be carried in an accessible cargo compartment of a passenger-carrying aircraft. a. No more than 25 kg (55 pounds) net weight of hazardous material may be loaded in an inaccessible manner. 11. No limitation applies to the number of packages of ORM (other regulated material) aboard a passenger-carrying aircraft. Page 66, Question 87: The following new question is added to better address FAA coverage of hazardous materials. 87. No person may carry more than of hazardous materials in a passenger-carrying aircraft (disregarding non-flammable compressed gas). A. 25 kg gross weight. B. 25 pounds net weight. C. 55 pounds net weight. Answer (C) is correct. (49 CFR 175.75) DISCUSSION: For each package containing a hazardous material acceptable for carriage aboard passenger-carrying aircraft, no more than 25 kg (55 pounds) net weight of hazardous material may be loaded in a passenger-carrying aircraft. The reference material for this question is found in Title 49 CFR Part 175, not the more commonly referenced Title 14 CFR Parts 91, 121, or 135. Answer (A) is incorrect. No person may carry more than 25 kg net, not 25 kg gross, weight of hazardous materials in a passenger-carrying aircraft (disregarding non-flammable compressed gas). Answer (B) is incorrect. No person may carry more than 55 pounds, not 25 pounds, net weight of hazardous materials in a passenger-carrying aircraft (disregarding non-flammable compressed gas).

Study Unit 3 Federal Aviation Regulations: Part 121 Page 69, Subunit 3.1, 121.106: The following outline content was revised to better address ETOPS information. 121.106 ETOPS Alternate Airport: Rescue and Fire Fighting Service Page 2 of 9 1. Extended-Range Twin-Engine Operational Performance Standards (ETOPS) are a set of rules developed by the International Civil Aviation Organization (ICAO) and approved by the FAA that permit twin-engine commercial air transports to fly routes that, at some the ETOPS entry points, are farther than a distance of 60-minutes flying time with one engine inoperative from an emergency or diversion airport with one engine inoperative that is adequate for an airplane with two engines. a. When filing an alternate using the 180 minute ETOPS rule, the alternate airport must have rescue and fire fighting services (RFFS) that meet the ICAO Category 4 standard, or higher. b. When filing an alternate using the beyond-180 minute ETOPS rule, the alternate airport must have RFFS that meet the ICAO Category 4 standard, or higher, and the aircraft must remain within the ETOPS authorized diversion time from an Adequate Airport that has RFFS equal to ICAO Category 7, or higher. Page 80, Subunit 3.1, Questions 4 and 5: The following new questions are added to better address FAA coverage of ETOPS on the ATP knowledge test. 4. ETOPS entry points mean A. the first entry point on the route of flight of an ETOPS flight using one-engine-inoperative cruise speed that is more than 90 minutes from an adequate airport for airplanes having two engines. B. the first entry point on the route of flight of an ETOPS flight using one-engine-inoperative cruise speed that is more than 60 minutes from an adequate airport for airplanes having two engines. C. the first entry point on the route of flight of an ETOPS flight using one-engine-inoperative cruise speed that is more than 207 minutes from an adequate airport for airplanes having more than two engines. Answer (B) is correct. (FAR 121.7) DISCUSSION: An ETOPS entry point is the point at which the airplane is farther than a distance of 60 minutes flying time with one engine inoperative from an emergency or diversion airport that is adequate for an airplane with two engines. Answer (A) is incorrect. The flying time stipulated by the rule is 60 minutes, not 90 minutes. Answer (C) is incorrect. An ETOPS entry point occurs at the point where the flying time is more than 60 minutes, not 207 minutes. 5. For flight planning, a Designated ETOPS Alternate Airport A. for ETOPS up to 180 minutes, must have RFFS equivalent to that specified by ICAO Category 3, unless the airport s RFFS can be augmented by local fire fighting assets within 45 minutes. B. for ETOPS up to 180 minutes, must have RFFS equivalent to that specified by ICAO Category 4, unless the airport s RFFS can be augmented by local fire fighting assets within 45 minutes. C. for ETOPS up to 180 minutes, must have RFFS equivalent to that specified by ICAO Category 4, unless the airport s RFFS can be augmented by local fire fighting assets within 30 minutes. Answer (C) is correct. (FAR 121.106) DISCUSSION: For ETOPS up to 180 minutes, RFFS equivalent of that specified in ICAO Category 4 is a requirement; however, the RFFS can be augmented by local fire fighting assets with a 30-minute response time. Answer (A) is incorrect. The RFFS requirement under ICAO is for Category 4, not Category 3. The response time for local fire fighting assets is also incorrect; the allowance is 30 minutes, not 45 minutes. Answer (B) is incorrect. The response time for local fire fighting assets is 30 minutes, not 45 minutes.

Study Unit 5 Aerodynamics and Airplanes Page 171, Subunit 5.4, 5.: The following outline content is added to better address the use, function, and purpose of flap systems. Page 3 of 9 5. Flaps are secondary flight control systems that are installed on the inboard section of the wing along the trailing edge. a. Flaps are the most common high-lift devices used on aircraft. b. The four common types of flaps are 1) Plain 2) Split 3) Slotted 4) Fowler c. When fully extended, both plain and split flaps produce high drag with little additional lift. d. The split flap produces a slightly greater increase in lift than the plain flap; however, more drag results due to the turbulent air pattern produced behind the airfoil. e. Fowler flaps generate the most lift and drag of any flaps when fully extended. 1) When extended, Fowler flaps also cause the greatest downward pitching moment of all flap types. f. Thick wings benefit from the greatest increase in lift when flaps are extended. Page 171, Subunit 5.6, 4.: The following outline content is added to better address the subject of drag and its relationship with airfoils. 5.6 DRAG 1. When airspeed decreases below the maximum L/D airspeed, total drag increases due to increased induced drag. a. At maximum L/D, a propeller-driven airplane enjoys maximum range and maximum engineout glide distance. 2. When an airplane leaves ground effect, it will require an increase in angle of attack to maintain the same lift coefficient due to an increase in induced drag. 3. As gross weight increases, induced drag increases more than parasite drag increases. 4. Drag increases significantly when the boundary layer separates from the surface of the airfoil. a. The boundary layer separation and subsequent increase in drag can result in a stall. Page 176, Subunit 5.18, 11.: The following information on V NE is added to the outline for this subunit. 5.18 MULTIENGINE AIRPLANE OPERATION 1. Stalls should never be practiced with one engine inoperative or at idle power; loss of control may result. 2. The blue line on the airspeed indicator on a light twin-engine airplane represents the maximum single-engine rate of climb at gross weight.

Page 4 of 9 3. Pilots of light twin-engine airplanes should be able to maintain heading at V MC. a. V MC decreases with altitude on airplanes with unsupercharged engines. b. V MC is the highest when CG is in the most rearward allowable position. 4. When an engine on a twin-engine airplane fails, the rate of climb will be reduced by 50% or more. 5. The critical engine of a twin-engine airplane is the one with the center of thrust closest to the center line in the fuselage. 6. The ball of the slip-skid indicator may be deflected outside of its reference lines when operating on a single engine in a light twin at any airspeed above V MC. 7. Slush on the runway has the effect of reducing the critical engine failure speed (V 1 ). 8. The safest and most efficient takeoff and initial climb procedure in a light twin is to accelerate to an airspeed slightly above V MC and then lift off and climb at the best-rate-of-climb airspeed. 9. Use V YSE if engine failure occurs at an altitude above the single-engine ceiling. 10. For an engine-out approach and landing, the flight path and procedures should be almost identical to the normal approach and landing. 11. V NE is published and shown by a red radial line on the airspeed indicator. a. V NE decreases with altitude. This is especially true of helicopters, which are subject to a retreating blade stall when flying at or near V NE. Page 177, Subunit 5.20, 4.a.: The following information on preventing compressors stalls is added to the outline for this subunit. 5.20 COMPRESSOR STALL 1. A transient compressor stall is characterized by intermittent bang as backfires and flow reversals take place. 2. Strong vibrations and a loud roar indicate that a compressor stall has developed and become steady. 3. Steady, continuous flow-reversal compressor stall has the greatest potential for severe engine damage. 4. To recover from a compressor stall, the pilot should reduce the throttle, decrease the aircraft s angle of attack, and increase airspeed. These steps will allow the compressor blades to recover from the stall that precipitated the issue. a. To prevent compressor stalls, compressor bleed valves are contained in the system to restrict the engine until it is at an RPM that allows it to respond to a rapid acceleration demand without distress. Page 179, Subunit 5.25, 3.: The following information on true airspeed is added to the outline for this subunit. 5.25 PITOT SYSTEM 1. If both the ram air input and the drain hole of the pitot system become completely blocked during an en route descent in a fixed-thrust and fixed-pitch attitude configuration, a decrease in indicated airspeed should be expected. a. If level flight is conducted, large power changes may not produce any variation in indicated airspeed. b. In other words, the airspeed indicator may act as an altimeter.

Page 5 of 9 2. If the ram air input to the pitot tube is blocked by ice but the drain hole and static port are not, the indicated airspeed will drop to zero. 3. True airspeed (TAS) is calibrated airspeed corrected for nonstandard temperature and pressure. a. TAS increases as altitude increases. Page 180, Subunit 5.27, 4.: The following information on the automated flight deck is added to the outline for this subunit. 5.27 GLASS COCKPIT SYSTEMS 1. Moving map systems offer many benefits to pilots, including increased situational awareness, better emergency planning resources, enhanced collision avoidance information, and much more. a. Despite the great benefits of moving map displays, they are not approved to be used as primary navigation instruments. They are designed to provide supplementary navigation and position information. b. While the primary navigation CDI and related system components are required to meet certification standards for accuracy of information, moving map displays are not. Thus, a moving map may or may not be accurate depending on the accuracy of the information being fed to it by the navigation source. 2. If a moving map display should experience errors or failures, they will be displayed to the pilot in several different ways. a. Failure indications on the moving map can be quite subtle. 1) The moving map will reflect a loss of position information by the removal of the aircraft symbol, compass labels, and other subtle differences. 2) A message of some sort will also appear, alerting the pilot that the navigation source is not providing data to the display unit. a) Remember that a moving map display is not a control unit; it is only a display unit. Acknowledging a message has no effect on the system that sent the message. b) The only way to reset the NAV source in the event of a failure would be to troubleshoot the source itself, not the moving map display. 3. Primary flight displays (PFDs) display pertinent flight information to the pilot in a condensed, easily reviewable space. a. Airspeed information is presented via a vertical scrolling tape with low-speed values at the bottom of the tape and high-speed values at the top of the tape. 1) When airspeed is increasing, the vertical tape scrolls downward, allowing for the higherspeed values to be displayed on the tape. b. Make use of your standby instruments to detect abnormalities inflight. 1) EXAMPLE: If your standby and PFD airspeed indications are dramatically different and your power setting and flight condition agree with the standby indication, there is most likely a blockage in the pitot line feeding the Air Data Computer (ADC), which feeds airspeed information to the PFD. 4. The automated flight deck can be a great help to pilots under high workload situations, like flying in busy terminal areas or executing a missed approach in adverse weather conditions.

Page 186, Subunit 5.6, Question 34.: The following new question regarding the boundary layer of an airfoil is added. Page 6 of 9 34. If the boundary layer separates A. drag will decrease. B. the airflow separates from the wing surface and stall occurs. C. ice will not sublimate in this area. Answer (B) is correct. (ANA Chap 1) DISCUSSION: The boundary layer is the thick boundary that exists between the flow of air and the solid surface of the airfoil. If the boundary layer separates, the airflow separates as well, causing an increase in drag and a loss of lift that results in a stall. Answer (A) is incorrect. Drag increases with the separation of the boundary layer. It does not decrease due to the separation. Answer (C) is incorrect. The separation of the boundary layer affects airflow, lift, and drag in a relatively short duration manner. The result is an increase in drag and a stall. The sublimation of ice is not a factor in this situation. Page 187, Subunit 5.7, Question 40: The following question on the effect of altitude on true airspeed is added. 40. How does V S (KTAS) vary with altitude? A. Remains the same at all altitudes. B. Varies directly with altitude. C. Varies inversely with altitude. Answer (B) is correct. (PHAK Chap 7) DISCUSSION: Due to the lesser pressure at altitude, a higher true airspeed is required to create the same pressure differential between impact (pitot) pressure and static air pressure. Consequently, true airspeed increases as altitude increases. Answer (A) is incorrect. True airspeed (TAS) increases with altitude; it does not remain unchanged. Answer (C) is incorrect. True airspeed varies directly with altitude, not inversely. As altitude increases, true airspeed increases. Page 215, Subunit 5.18, Question 122: The following question on the effect of altitude on V NE is added. 122. How does V NE change with altitude? A. Stays the same. B. V NE increases with increasing altitude. C. V NE decreases with increasing altitude. Answer (C) is correct. (PHAK Chap 7) DISCUSSION: V NE decreases with altitude and is of special interest to helicopter pilots due to the increasing risk of a retreating blade stall at higher altitudes when flying at or near V NE in gusty conditions. Answer (A) is incorrect. V NE decreases with altitude; it does not remain the same. Answer (B) is incorrect. V NE decreases with altitude; it does not increase. The radial red line on the airspeed indicator is the value of V NE at sea level. As altitude increases, that value will decrease. Page 218, Subunit 5.20, Question 136: The following question on the prevention of compressor stalls is added. 136. What limits turbine engines from developing compressor stalls? A. Deice valves-fuel heat. B. Compressor bleed valves. C. TKS system. Answer (B) is correct. (FAA-H-8083-3A) DISCUSSION: To prevent compressor stalls, compressor bleed valves are contained in the system to restrict the engine until it is at an rpm that allows it to respond to a rapid acceleration demand without distress. Answer (A) is incorrect. Deice valves and heated fuel do not contribute to the prevention of compressor stalls in turbine engines. Answer (C) is incorrect. The TKS system is an antiicing system that prevents ice from building up on the aircraft. It does not play a role in the prevention of compressor stalls.

Page 7 of 9 Page 228, Subunit 5.27, Question 186: The following question on the use of automated flight decks is added. 186. Automated flight decks or cockpits A. enhance basic pilot flight skills. B. decrease the work load in terminal areas. C. often create much larger pilot errors than traditional cockpits. Answer (B) is correct. (AAH Chap 4) DISCUSSION: The automated flight deck can be a great help when flying in high workload situations, such as in a busy terminal area or when executing a missed approach in adverse weather conditions. Answer (A) is incorrect. The automated flight deck can assist a pilot or provide enhanced information to the pilot, but it cannot directly affect the pilot s basic skills. Answer (C) is incorrect. Although errors can occur when piloting an aircraft with an automated flight deck, the automated systems do not make those errors more common or more serious than similar errors that occur in an aircraft with a nonautomated flight deck. Study Unit 6 Airspace and Airports Page 231, Subunit 6.3, 5.: To better cover the topic of the ILS critical area boundary sign, the following edits are made to the outline for this subunit. 5. An ILS critical area boundary sign (Fig. 157 on page 244) has a graphic depiction of the ILS pavement holding position marking. a. The image on page 241 shows ILS Critical Area Markings and is listed as Figure 224 in the ATP FAA Test Supplement The ILS critical area hold sign is red with white lettering. 1) This sign is seen at entrances to a runway or a critical area and indicates that you should stop before proceeding past it when the ILS approach is in use. b. The ILS critical area boundary sign is yellow with black lines. 1) This sign is seen when exiting a runway and indicates that aircraft should taxi beyond the sign s location before stopping when the ILS approach is in use. Page 244, Question 35: The following question is added regarding the importance of the ILS critical area boundary sign. 35. ILS critical area sign indicates A. where aircraft are prohibited. B. the edge of the ILS critical area. C. the exit boundary. Answer (B) is correct. (PHAK Chap 13) DISCUSSION: An ILS critical area sign indicates the edge, or boundary, of the ILS critical area. Answer (A) is incorrect. The ILS critical area sign is seen when exiting the runway. It indicates the boundary, or edge, of the ILS critical area. If the ILS approach is in use, aircraft should taxi beyond the sign s location before stopping. Answer (C) is incorrect. Although the ILS critical area sign indicates the boundary, or edge, of the ILS critical area, it does not indicate an exit boundary. When the ILS is in use, aircraft should taxi beyond the sign s location before stopping.

Study Unit 8 IFR Navigation Equipment, Holding, and Approaches Page 284, Subunit 8.12, 1.e.: The following LPV information is added to the outline for this subunit. 8.12 GPS APPROACHES 1. Authorization to conduct any GPS operation under IFR requires, in part, that Page 8 of 9 a. Procedures must be established for use in the event that the loss of receiver autonomous integrity monitoring (RAIM) capability is predicted to occur. 1) In such an event, you must rely on other approved navigation equipment, delay departure, or cancel the flight. b. Air carrier and commercial operators must meet the appropriate provisions of their approved operations specifications. c. Aircraft navigating by GPS are considered to be RNAV-equipped aircraft and must use the appropriate equipment suffix in the flight plan. d. Pilots must be able to retrieve RNAV/RNP approach procedures by name from the aircraft navigation database. e. To conduct an LPV approach, the aircraft must be equipped with an approach-certified system with a required navigation performance (RNP) of 0.3. Page 285, Subunit 8.12, 5.a.: The following WAAS clarification is added to the outline for this subunit. 5. In each phase of the GPS Approach Overlay Program, any required alternate airport must have an approved IAP, other than GPS or LORAN-C, which is anticipated to be operational and available at the estimated time of arrival and which the airplane is equipped to fly. a. This restriction does not apply to aircraft with RNAV systems using WAAS equipment. Page 285, Subunit 8.12, 13.b.: The following GPS navigation information is added to the outline for this subunit. 13. In order to fly published IFR charted departures and SIDs, the GPS receiver must be set to terminal (±1 NM) CDI sensitivity, and the navigation routes must be in the database. a. Remember, the database may not contain all of the transitions or departures from all runways, and some GPS receivers do not contain SIDs in the database. b. In order to use a substitute means of guidance on departure procedures, pilots of aircraft with RNAV systems using DME/DME/IRU without GPS input must ensure their aircraft navigation system position is confirmed within 1,000 feet at the start point of takeoff roll.

Page 9 of 9 Page 344, Subunit 8.12, four new questions: The following new questions are added based on FAA test coverage of various GPS-related topics. 154. When the use of RNAV equipment using GPS input is planned to be used for an instrument approach at a destination airport, any required alternate airport must have an available instrument approach procedure that does not A. require the us of GPS except when the RNAV system has an IRU input. B. require the use of GPS except when dual, independent GPS receivers are installed. C. require the use of GPS except when the RNAV system has a WAAS input. 155. Pilots are not authorized to A. fly a published RNAV or RNP procedure unless it is retrievable by the procedure name from the aircraft database. B. fly a published RNAV or RNP procedure unless it is retrievable by the procedure name from the aircraft database, or manually loaded with each individual waypoint in the correct sequence. C. fly a published RNAV or RNP procedure unless it is retrievable by the procedure name from the aircraft database, or manually loaded with each individual waypoint and verified by the pilots. 156. To conduct a localizer performance with vertical guidance (LPV) RNAV (GPS) approach, the aircraft must be furnished with A. a WAAS receiver (TSO-145A/146A) approved for an LPV approach. B. a GPS receiver certified for IFR operations. C. an approach-certified system with required navigation performance (RNP) of 0.3. 157. In order to use a substitute means of guidance on departure procedures, pilots of aircraft with RNAV systems using DME/DME/IRU without GPS input must A. ensure their aircraft navigation system position is confirmed within 2,000 feet of the initialization point. B. ensure their aircraft navigation system position is confirmed within 1,000 feet of pushback. C. ensure their aircraft navigation system position is confirmed within 1,000 feet at the start point of takeoff roll. Answer (C) is correct. (AIM Para 1-2-3) DISCUSSION: Any required alternate airport must have an available instrument approach procedure that does not require the use of GPS. The exception to that rule applies to RNAV systems using WAAS equipment. Answer (A) is incorrect. The restriction stipulates that the alternate airport must have an instrument approach procedure available that does not require GPS unless the RNAV system utilizes WAAS equipment. There is no exception for RNAV systems with an IRU input. Answer (B) is incorrect. The restriction stipulates that the alternate airport must have an instrument approach procedure available that does not require GPS unless the RNAV system utilizes WAAS equipment. Dual, independent GPS receivers that are not WAAS compliant would not meet the conditions for the exception. Answer (A) is correct. (AIM Para 5-5-16) DISCUSSION: In order to fly a published RNAV or RNP procedure, it must be retrievable from the aircraft navigation database by the procedure name, not simply as a manually entered series of waypoints. Answer (B) is incorrect. It is not acceptable to retrieve the procedure via a manually entered series of waypoints. It must be retrievable from the aircraft navigation database by the procedure name. Answer (C) is incorrect. The procedure cannot be retrieved by manually entering a series of waypoints. It must be retrieved from the aircraft navigation database by its procedure name. Answer (C) is correct. (IFH Chap 7) DISCUSSION: The United States currently supports three standard RNP levels. The 0.3 tolerance indicates a 0.3-NM distance on either side of a specified flight path centerline, which is established for aircraft and obstacle separation. Answer (A) is incorrect. The requirement is for a required navigation performance of 0.3 NM on either side of the flight path centerline. There is no specific requirement that a WAAS receiver approved for LPV approaches must be used. Answer (B) is incorrect. The requirement for an LPV approach is that the aircraft must be approach certified, not just IFR certified, and that it must have a required navigation performance of 0.3. Answer (C) is correct. (AC 90-100A) DISCUSSION: Pilots using DME/DME/IRU without GPS/GNSS must ensure the aircraft navigation system position is confirmed within 1,000 feet at the start point of the takeoff roll. Answer (A) is incorrect. The tolerance is 1,000 feet, not 2,000 feet, and the reference point is the start of the takeoff roll, not the initialization point. Answer (B) is incorrect. The reference point for the aircraft navigation system position is the start of the takeoff roll, not the pushback position.