Aviation Fire Journal

Similar documents
Boeing Airplane Overview

1.0 SCOPE AND INTRODUCTION. 1.1 Scope. 1.2 Introduction. 1.3 A Brief Description of the

FLIGHT OPERATIONS PANEL

Airport Compatibility Brochure 737 MAX. March 2014 PRELIMINARY

Cargo Aircraft Specifications

The offers operators increased capacity while taking advantage of existing airport infrastructure. aero quarterly qtr_03 10

Technical Guidance Material for Aerodromes Rescue & Fire Fighting Services Advisory Circular

Part 26 CAA Consolidation 25 March 2010 Additional Airworthiness Requirements

The Boeing Next-Generation 737 Family Productive, Progressive, Flexible, Familiar

Runway Length Analysis Prescott Municipal Airport

Boeing Product Update

EASA Safety Information Bulletin

A holistic approach to aerodrome certification

AERODROME RESCUE AND FIRE-FIGHTING (ARFFS) & EMERGENCY MANAGEMENT SYSTEM

Daher s TBM 930 makes its mark in the charter sector

Airport Compatibility

International Industry Working Group Fifth Edition R1, 2007

-212/-212A Airplanes; Seats with Non-Traditional, Large, Non-Metallic Panels

Airfield Geometric Design Prof. Amedeo Odoni

717 Aeroplane JAA Data Sheet

Airfield Geometric Design Prof. Amedeo Odoni

MHT Technical Publications and Training

European Aviation Safety Agency

Simulating Airbags for ExoMars Project Using Grids for Competitive Advantage Where Is Your Performance Data?

Fokker Technologies The Fokker mind, heart and soul

2.1 General Characteristics. 2.2 General Dimensions. 2.3 Ground Clearances. 2.4 Interior Arrangements. 2.5 Cabin Cross Sections

NOTE: DATA PRELIMINARY

[Docket No. FAA ; Special Conditions No SC]

TANZANIA CIVIL AVIATION AUTHORITY AIR NAVIGATION SERVICES INSPECTORATE. Title: CONSTRUCTION OF VISUAL AND INSTRUMENT FLIGHT PROCEDURES

Daher marks an aviation milestone with its rollout of the 800 th TBM aircraft

Airport Compatibility

INTERNATIONAL FIRE TRAINING CENTRE

European Aviation Safety Agency

Civil Aviation Authority. Information Notice. Number: IN 2016/052

Policies for Certification, operation and maintenance of UAS Andres Eduardo Parra Catama Air Safety Inspector Civil Aviation Authority of Colombia

EDTO SARPS FROM ANNEX 6 PART 1

TYPE CERTIFICATE DATA SHEET

Worldwide Aircraft Services, Inc

TWELFTH AIR NAVIGATION CONFERENCE

FLIGHT OPERATIONS PANEL

Commercial Aviation Safety Team

Cargo Certification Process

Quiet Climb. 26 AERO First-Quarter 2003 January

CEE 5614 and CEE Aircraft Classifications. Spring 2013

TAXIBOT. May Technical Partner

SUMMARY REPORT ON THE SAFETY OVERSIGHT AUDIT FOLLOW-UP OF THE CIVIL AVIATION AUTHORITY OF SLOVENIA

Consideration will be given to other methods of compliance which may be presented to the Authority.

Performance Based Navigation Literature Review

SECTION B AIRWORTHINESS CERTIFICATION

ASSEMBLY 37TH SESSION

The A330 Family Powering into the future

European Aviation Safety Agency

The purpose of this procedure is to establish guidelines for the response of Fire Department personnel and equipment to an aircraft emergency.

S&T Stakeholders Conference

FORT LAUDERDALE-HOLLYWOOD INTERNATIONAL AIRPORT ENVIRONMENTAL IMPACT STATEMENT DRAFT

airplanes; Fuselage In-Flight Fire Safety and Flammability Resistance.

FUEL MANAGEMENT FOR COMMERCIAL TRANSPORT

Mr. Chairman, Members of the Committee, I am Chet Fuller, President GE Aviation

Type Acceptance Report

CEE Quick Overview of Aircraft Classifications. January 2018

INTERNATIONAL FIRE TRAINING CENTRE

Review of. Boeing B Captain. Produced by Captain Sim

THE CIVIL AVIATION ACT (No. 21 of 2013 THE CIVIL AVIATION (OPERATION OF AIRCRAFT) (AMENDMENT) REGULATIONS, 2015

Airport/Aircraft Compatibility Challenges on the Apron

Status Report on an Effort to Evaluate and Develop Methodologies for Calculating Firefighting Agent Quantities Needed to Combat Aircraft Fires

The ATR -600 Series At the forefront of advanced and innovative turboprop technology NEW AVIONICS SUITE

Community Risk in Emerging Aviation Markets. Christian M Salmon & Alfredo Lagos Aviation Institute The George Washington University

RNP AR APCH Approvals: An Operator s Perspective

FLIGHT OPERATIONS PANEL (FLTOPSP)

Boeing Aircraft and the Impact on Airports

Comment response document for Airbus A380 D 04 Crew Rest Compartment

EXTENDED-RANGE TWIN-ENGINE OPERATIONS

WORKING PAPER. International. Dangerous Goods SUMMARY. involving. Action by 1.1. be taken in equipment. actions to. 1.2 Guidance. for Aircraft 1.

Seychelles Civil Aviation Authority. EU-OPS 1 and JAR-OPS 3 Subpart K and L Compliance Document

Special Conditions: The Boeing Company Model and Airplanes;

TYPE-CERTIFICATE DATA SHEET

Frequently Asked Questions

THE EVOLUTION IS REVOLUTIONARY

Air Navigation Bureau ICAO Headquarters, Montreal

3. ICAO Supporting Tools - Publicly available

IN FLIGHT REFUELING FOR COMMERCIAL AIRLINERS

Washington Dulles International Airport (IAD) Aircraft Noise Contour Map Update. Ultimate Operations 5th Working Group Briefing 9/25/18

Terms of Reference for a rulemaking task. Implementation of Evidence-Based Training within the European regulatory framework RMT.0696 ISSUE

Airport Obstruction Standards

Airport Compatibility Brochure 737 MAX

Emergency Response Guidance for Aircraft Incidents Involving Dangerous Goods

Explanatory Note to Decision 2016/009/R

Follow-the-Greens: The Controllers Point of View Results from a SESAR Real Time Simulation with Controllers

Atlantic Interoperability Initiative to Reduce Emissions AIRE

1 JAR-OPS 1 AND 3 SUB-PARTS K AND L COMPLIANCE DOCUMENT

Air Law and ATC Procedures Subject: AIR LAW AND ATC PROCEDURES

Beyond Fuel Efficiency

ICAO Initiatives on Aircraft Noise

Bird Strike Damage Rates for Selected Commercial Jet Aircraft Todd Curtis, The AirSafe.com Foundation

SUBPART C Operator certification and supervision

Different in character or other means of compliance. Less protective or partially implemented not implemented

Learning Objectives. By the end of this presentation you should understand:

Certification Specifications and Acceptable Means of Compliance for Aircraft Noise CS-36

ATR FREIGHTER VERSIONS. AN EASY CONVERSION AVAILABLE SINCE 2002, TO EXTEND ATR s

Transcription:

Aviation Fire Journal The Internet Magazine Of Worldwide Aviation Fire Protection Volume 7, Issue 2 March / April 2005 1

THE AIRBUS A-380: RESCUE & FIRE PROTECTION By Yorgos Saounatsos Ground Operations & Environment SE A380 Programme - BNEJ AIRBUS - FRANCE The A380-800 is an all-new twinaisle, twin-deck four-engined aircraft having a baseline seating capacity of 555 passengers in a three-class configuration. First flight is expected in the first quarter of 2005, while it is scheduled to enter service with Singapore Airlines in the second quarter of 2006. Total orders and commitments to date (December '04) stand at 139 for both the passenger and freighter versions as received from 13 airlines (122 passenger aircraft and 17 freighters). The freighter version (A380-800F) is scheduled to enter service in 2008. Although the payload capacity of the A380-800 in terms of seats is 35% more than Boeing 747, it is only 7 feet longer having a total length of 238.6ft, w h i l e compared to the B777-300 and A340-600 it is actually 4 and 9 feet shorter respectively. Its total wingspan is 261.6ft. FIRE SAFETY The progress made in aircraft fire s a f e t y technology and the evolution of regulations over the past 35 years is noteworthy. This evolution, as illustrated below, contributes to passenger c o n f i d e n c e t h a t t o d a y' s commercial aircraft is safer than ever. Airbus' task as an aircraft manufacturer is to enhance the safety of the traveling public and the confidence of the aviation community by applying the highest safety standards to its products. The all-new A380 was an opportunity to apply state-of the-art technology that also has benefits in terms of fire safety. 4 In general, the fire safety standards set by Airbus for its aircraft, including the A380, not only meet but in most cases exceed the existing JAA and FAA requirements. For example, some of the stringent Airbus requirements with which the A380 complies include: i) Higher smoke density standards for "major interior parts" requiring lower smoke concentration (Dm 150 compared to 200 set by the authorities) ii) Defined specific toxicity limits for aircraft, something not yet addressed by the authorities

iii) Rigorous heat release/rate requirements which call for 55/55 Kw/m 2 compared to 65/65 Kw/m 2 set by the authorities, significantly decreasing the flash-over probabilities of the cabin iv) Smoke emission and toxicity tests for air ducts, thermal insulation, sidewall panels, hat rack covers, fasteners, electrical wiring, etc. In addition, the A380 will comply with the new FAA 25.856 (a) & (b) requirements for "Flame P r o p a g a t i o n " ( e f f e c t i v e September 2005) and "Flame Penetration/Burnthrough" (effective September 2007). The A380 will inherently have better burn-through characteristics on its upper fuselage due to the use of a new hybrid material called GLARE a sandwich of alternate layers of aluminum foils and unidirectional glass fibres - which has considerably higher burn-through resistance than conventional aluminum alloys. Hence, with the combination of GLARE on the upper fuselage and insulation blankets on the inside lower fuselage, complying with FAA 25.856(b), the A380 will be better protected against burn-through during a post crash fuel fire. The A380 incorporates several Carbon Fibre Reinforced Plastic composites (CFRP) into primary and secondary structures such as the central wing box, the tail cone, vertical and horizontal stabilisers, etc.. It may not be widely known that CFRPs also have increased burn-though resistance compared to conventional aluminum alloys, even if the "resin" used for their manufacturing in aviation applications is responsible for denser external smoke when the CFRP is exposed for a prolonged time period to large fuel fires. ARFF OPERATIONS From the very early stages of the A380 s development, Airbus established a team to manage all possible airport compatibility issues including ARFF. The outcome of multiple studies performed on many major international airports and their existing infrastructure was fed back to the design parameters of the A380 in order to produce an aircraft capable of safely operating from ICAO Code E or FAA Group V airports, even though its corresponding airport design category is ICAO Code F or FAA 5 Group VI. As a result, the A380 has been designed to operate: a) Under current ICAO ARFF requirements, b) With existing ARFF equipment already in use at major airports and c) A c c o r d i n g t o established ARFF practices The A380 is classified under ICAO ARFF Category 10 due to its cabin width of 23.4ft. ICAO Cat. 10 calls for 8,500 gallons of minimum water/ extinguishing agent on scene, which is 33% above ICAO Category 9 requirements (corresponding to B747) and 42% more than FAA Index E. We know that the methodology for determining minimum usable amounts of extinguishing agents (water) is based on the TCA/PCA principle developed more than 30 years ago, which is driven by fuselage length. Comparing, however, the minimum water requirements of the various ICAO ARFF categories, we see a certain logical pattern derived which relates to the quantity of fuel carried. For example, considering the revolution to commercial aircraft size during the 1970 s brought on by the B747 over the existing B707 and comparing the fuel quantities of these two aircraft, it becomes apparent that the increase in ARFF water requirements corresponds to the increase in the associated fuel quantities. A 103% fuel increase of B747 over B707 is analogous to the 101% increase in ARFF minimum water requirements between ARFF Categories 7 (B707) and Cat. 9 (B747). The same holds for the A380 and B747; a 29% fuel increase of the A380 over B747-400 is analogous to the 33% increase of minimum water requirements between ARFF Categories 9 and

10. It should also be noted that based on the current methodology for calculating minimum ARFF water quantities (ICAO Doc 9137 Part 1), the A380 has an actual requirement of 7,344 gallons of water, achieving a 14% margin with current minimum requirements of Cat. 10 (8,500 gallons). This is not the case for other wide body jets flying today, as some of them actually require more than the minima set by ICAO. Although the full upper deck existence might require some operating RFF procedures to be fine tuned, the operational approach remains the same as with B747, while all ARFF equipment already exists today for rescue operations on the upper deck. The picture above depicts ARFF upper deck access vehicles used by Frankfurt ARFF for B747 operations, while other portable stairs cap a b l e o f reaching 8m height (same as B747 upper deck doors) are also illustrated. Tests have also been carried out on fuselage piercing with "snozzle" ARFF equipment which confirmed that GLARE piercing for ARFF purposes is feasible with existing equipment, requiring 600psi compared to 500psi for conventional aluminum alloy panels (available "snozzle" vehicles may have as much as 2800psi piercing capability). The emergency slides of the A380 comply with the latest FAA TSO C69c requirements, and among others, incorporate lighting on their 6

vertical holds and at tip for night evacuation, as well as "re-entry" lines for access of ARFF crews to both decks in case of absence of other means (illustrated below). The slides extend 50.5ft from the longitudinal centerline of the fuselage, which is only 3.2ft more than B747 upper deck slides. The clearance obtained between the far end toe of upper deck slides and the TCA perimeter is 10.5ft (aircraft at Maximum Ramp Weight). The A380 will have to meet the 90 sec. evacuation time requirements at its highest density configuration as per FAA/JAA 25.803. Furthermore, a separate "migration" scenario will be run to investigate possible migration of upper deck passengers to main deck, thus exceeding even the stringent certification requirements. CONCLUSION The A380 has been designed to operate under existing ICAO ARFF requirements, according to current practices and with existing equipment. After 35 years of development and progress in commercial aviation safety, we can say that fire safety regulations have evolved to cover all aspects of modern aircraft systems & evacuation means, and the A380 design fully took account of that. For instance: Materials with improved standards in terms of burn-through & fire propagation, Stricter requirements which apply to aircraft manufacturing & Certifications and Airports, consulted throughout by the Airbus teams, are better organized and equipped in terms of RFF & crisis management success to fully address large aircraft operations. ABOUT THE AUTHOR - MR. YORGOS SAOUNATSOS is employed with Airbus in the A380 Programme. In his capacity as a senior engineer for ground operations, he is the functional integration team manager for the associated validation & verification process and also responsible for ARFF of the A380. In the past, he worked for the new Athens Int'l Airport, where in his capacity as a senior operations supervisor he managed the airport operation center and also served as the on-scene commander for aircraft and airport related emergencies. Before that, he was responsible for the elaboration of the Aerodrome Operations Manual and emergency response procedures. He holds a BSc in Aerospace Engineering, MSc in Air Transport Management, MSc in Logistics and a FAA commercial pilot license & flight Instructor rating. AIRPORT FIRE - RESCUE USA 2nd INTERNATIONAL AIRCRAFT RESCUE & FIRE FIGHTING CONFERENCE & EXHIBITION May 9-11, 2005 Excalibur Hotel / Casino Las Vegas, Nevada REGISTER TODAY! AVIATION FIRE JOURNAL The Internet Magazine of Worldwide Aviation Fire Protection is pleased to invite you to attend our AIRPORT FIRE-RESCUE U.S.A. 2 nd International Aircraft Rescue Fire Fighting Conference & Exhibition If you are an ARFF, Military or Municipal Fire / Rescue professional, Airport Manager, or Airport / Airline Safety Officer you will want to attend this conference! Register early to get in on the raffle for a free Vegas Holiday! This years conference features the FIRST- EVER ARFF MANUFACTURERS EXHIBITION that is open free to the public. For further conference details visit our web site: AVIATION FIRE JOURNAL is a publication of AFJ Multimedia 7