MAURI PELTO, Nichols College, Dudley, MA

Similar documents
THE DISEQUILBRIUM OF NORTH CASCADE, WASHINGTON GLACIERS

Impact of Climate Change on North Cascade Alpine Glaciers, and Alpine Runoff

NORTH CASCADE SLACIER CLIMATE PROJECT Director: Dr. Mauri S. Pelto Department of Environmental Science Nichols College, Dudley MA 01571

Forecasting temperate alpine glacier survival from accumulation zone observations

Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

Chapter 7 Snow and ice

USING THE PRECIPITATION TEMPERATURE AREA ALTITUDE MODEL TO SIMULATE GLACIER MASS BALANCE IN THE NORTH CASCADES JOSEPH A. WOOD

Mendenhall Glacier Facts And other Local Glaciers (updated 3/13/14)

ESS Glaciers and Global Change

Part 1 Glaciers on Spitsbergen

Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau

North Cascades National Park Complex Glacier Mass Balance Monitoring Annual Report, Water Year 2009

Present health and dynamics of glaciers in the Himalayas and Arctic

North Cascades National Park Complex Glacier Mass Balance Monitoring Annual Report, Water Year 2013

Regional Glacier Mass Balance Variation in the North Cascades

The Role of Glaciers in the Hydrologic Regime of the Nepal Himalaya. Donald Alford Richard Armstrong NSIDC Adina Racoviteanu NSIDC

Glacier change in the American West. The Mazama legacy of f glacier measurements

2. (1pt) From an aircraft, how can you tell the difference between a snowfield and a snow-covered glacier?

WATER, ICE, AND METEOROLOGICAL MEASUREMENTS AT SOUTH CASCADE GLACIER, WASHINGTON, BALANCE YEARS

Mass balance of a cirque glacier in the U.S. Rocky Mountains

Q: What is a period of time whereby the average global temperature has decreased? Q: What is a glacier?

The SHARE contribution to the knowledge of the HKKH glaciers, the largest ice masses of our planet outside the polar regions

TEACHER PAGE Trial Version

Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years

The Portland State University study of shrinking Mt. Adams glaciers a good example of bad science.

Mapping the Snout. Subjects. Skills. Materials

Warming planet, melting glaciers

GLACIER STUDIES OF THE McCALL GLACIER, ALASKA

Geomorphology. Glacial Flow and Reconstruction

- MASS and ENERGY BUDGETS - IN THE CRYOSPHERE

A high resolution glacier model with debris effects in Bhutan Himalaya. Orie SASAKI Kanae Laboratory 2018/02/08 (Thu)

GEOGRAPHY OF GLACIERS 2

Active Glacier Protection in Austria - An adaptation strategy for glacier skiing resorts

Laboratoire Mixte Internacionale GREATICE Glaciers and Water Resources in the Tropical Andes, Climatic and Environmental Indicators

Lake Chelan Operations

Evolution of Ossoue glacier, French Pyrenees: Tools and methods to generate a regional climate-proxy

Lesson 5: Ice in Action

Introduction to Safety on Glaciers in Svalbard

MASS BALANCE MEASUREMENTS ON THE LEMON CREEK GLACIER, SUmAU ICERELD ALASKA

Iceberg prediction model to reduce navigation hazards: Columbia Glacier, Alaska

Tidewater Glaciers: McCarthy 2018 Notes

CHANGES IN GLACIATION OF THE BALKHASH-ALAKOL BASIN OVER THE PAST 60 YEARS

Annual Glacier Volumes in New Zealand

Twin Lakes Avalanche Incident 1/31/2016

Regional impacts and vulnerability mountain areas

ESS Glaciers and Global Change

Climate Change Impact on Water Resources of Pakistan

Glacier Monitoring Internship Report: Grand Teton National Park, 2015

SYNOPSIS WEATHER AND SNOWPACK

ESS Glaciers and Global Change

Chapter 16 Glaciers and Glaciations

Glaciers. Glacier Dynamics. Glaciers and Glaciation. East Greenland. Types of Glaciers. Chapter 16

Revised Draft: May 8, 2000

Field Report Snow and Ice Processes AGF212

Geography 120, Instructor: Chaddock In Class 13: Glaciers and Icecaps Name: Fill in the correct terms for these descriptions: Ablation zone: n zne:

VOLUME CHANGES OF THE GLACIERS IN SCANDINAVIA AND ICELAND IN THE 21st CENTURY

What is a Glacier? GLACIOLOGY vs. GLACIAL GEOLOGY. snow corn firn glacier snow = neve ice

Henderson Mountain Avalanche Accident Two riders caught, one partially buried, one fully buried

Glaciers. Glacier Dynamics. Glacier Dynamics. Glaciers and Glaciation. Types of Glaciers. Chapter 15

EXPERIENCES WITH THE NEW HYDRO-METEOROLOGICAL

Glaciers. Clicker Question. Glaciers and Glaciation. How familiar are you with glaciers? West Greenland. Types of Glaciers.

Glacial lakes as sentinels of climate change in Central Himalaya, Nepal

READING QUESTIONS: Chapter 7, Glaciers GEOL 131 Fall pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean

READING QUESTIONS: Glaciers GEOL /WI 60 pts. a. Alpine Ice from larger ice masses flowing through a valley to the ocean

Community resources management implications of HKH hydrological response to climate variability

Glaciers and Glaciation Earth - Chapter 18 Stan Hatfield Southwestern Illinois College

Characteristics of an avalanche-feeding and partially debris-covered. glacier and its response to atmospheric warming in Mt.

THE TWENTY FIRST ANNUAL SOUTHERN AFRICA REGIONAL CLIMATE OUTLOOK FORUM MID-SEASON REVIEW AND UPDATE

Quantifying Changes in Glacier Thickness and Area Using Remote Sensing and GIS: Taku Glacier System, AK

Hydrology Input for West Souris River IWMP

What is a Glacier? GLACIOLOGY vs. GLACIAL GEOLOGY. snow corn firn glacier snow = neve ice

Integration Of Reflectance To Study Glacier Surface Using Landsat 7 ETM+: A Case Study Of The Petermann Glacier In Greenland

AN ABSTRACT OF THE THESIS OF

Physical Science in Kenai Fjords

Glaciers. Reading Practice

THE DEPARTMENT OF HIGHER EDUCATION UNIVERSITY OF COMPUTER STUDIES FIFTH YEAR

CRYOSPHERE ACTIVITIES IN SOUTH AMERICA. Bolivia. Summary

Quantifying Glacier-Derived Summer Runoff in Northwest Montana

Glaciers Earth 9th Edition Chapter 18 Mass wasting: summary in haiku form Glaciers Glaciers Glaciers Glaciers Formation of glacial ice

POLAR I.C.E. (Interactive Climate Education)

Integrated remote and in situ analysis of a playa lake groundwater system in northern Chile. Katherine H. Markovich The University of Texas at Austin

Long term mass and energy balance monitoring of Nepalese glaciers (GLACIOCLIM project): Mera and Changri Nup glaciers

Swede Creek Avalanche Incident Report Swede Creek, Whitefish Range, MT Date of Avalanche: 23 January 2016 Date of Site Visit: 24 January 2016

ICPAC. IGAD Climate Prediction and Applications Centre Monthly Bulletin, February 2017

Glaciological and Historical Analyses at the Boundary Glacier, Canadian Rocky Mountains

The Response of New Zealand s Glaciers to Recent Climatic Changes

I. Types of Glaciers 11/22/2011. I. Types of Glaciers. Glaciers and Glaciation. Chapter 11 Temp. B. Types of glaciers

Observation of cryosphere

Using the Sentinels to map the state and changes of Norwegian glaciers

Project Completion Rocky Mountains Cooperative Ecosystem Studies Unit

GEOSPATIAL ANALYSIS OF GLACIAL HAZARDS PRONE AREAS OF SHIGAR AND SHAYOK BASINS OF PAKISTAN. By Syed Naseem Abbas Gilany

Glaciers. Chapter 17

Alaskan landscape evolution and glacier change in response to changing climate

Typical avalanche problems

Climate Change and State of Himalayan Glaciers: Issues, Challenges and Facts

Using of space technologies for glacierand snow- related hazards studies

GLACIATION. The Last Ice Age (see Chapter 12) and. Pleistocene Ice Cap. Glacial Dynamics 10/2/2012. Laurentide Ice Sheet over NYS

Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry

GRANDE News Letter Volume1, No.3, December 2012

Global Warming in New Zealand

Transcription:

MAURI PELTO, Nichols College, Dudley, MA 01571(mspelto@nichols.edu)

Advice I am looking for Better schemes for utilizing atmospheric circulation indices to provide a better forecast for glacier mass balance? What oceanic proxies are well related to the glacier mass balance record? ie upwelling Hydrologic modeling (VIC) needs for mass balance data to better forecast future streamflow

Why Measure Glacier Mass Balance? Mass balance is the dominant control of future glacier terminus behavior. Glacier mass balance is the best measure of annual climate and its impact on a glacier, key indicator (IPCC and GCOS). Global mean glacier mass balance negative 17 consecutive years 1991-2007. Is a critical measure in water resource output of a glacier. Lynch Glacier Measurement network: Each dot is a measurement point

Probing relies on driving a probe through relatively soft snowpack from the previous winter. The snow-firn that survived the previous summer or blue ice under that snow is much harder, and cannot be penetrated. This discontinuity provides a reliable point measure of snow depth.

Annual snowlayer thickness is visible much like tree rings. providing a two dimensional measurement of snowpack thickness more reliable than a point measurements from probing or snowpits. Crevasse Only vertically Stratigraphy walled crevasses can be used. The layer can be traced from crevasse to crevasse and checked via probing.

Ablation is measured by emplacing stakes into the glacier and measuring the change in height above the glacier surface on several occasions each summer.

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 bn (m w.e) The annual balance records indicate the high degree of correlation between 11 North Cascade glaciers including South Cascade Glacier observed by the USGS North Cascade Glacier annual balance 3 2 1 0 Columbia Daniels Foss Ice Worm Lower Curtis -1-2 -3-4 Lynch Rainbow Yawning Easton South Cascade Sholes

bn (meters we) Cumulative mass balance 1984-2008 2 0-2 -4-6 -8-10 -12-14 2008 2006 2004 2002 2000 1998 1996 1994 1992 1990 1988 1986 1984 Years

What we know for sure- Glacier mass balance Annual balance of North Cascade glaciers strongly correlated from glacier to glacier, annual range approximately 1 m. Mean annual balance 1984-2008 0.48 m/a. The cumulative mass balance thickness loss of 12.0 m represents a 20-40% loss of glacier volume.

ALPI ALPI-Annual Balance 6 5 4 3 2 1 ALPI 0-1 -2-3 -4-2.50-2.00-1.50-1.00-0.50 0.00 0.50 1.00 1.50 2.00 Annual Balance Climate Indices and Mass balance do not have a strong direct correlation not well correlated climate indices

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Forecast Rules Rule Conditions If both PDO and ENSO are positive, than glacier mass balance will be negative on South Cascade Glacier and NCGCP glaciers If PDO is negative and ENSO is equilibrium or negative, mass balance will be equilibrium or positive on South Cascade Glacier and NCGCP glaciers If PDO is positive and ENSO is neutral the glaciers will have an equilibrium or negative balance on South Cascade and positive on NCGCP glaciers. If PDO is negative and ENSO is positive the glacier balance will be negative on South Cascade Glacier and positive balance on NCGCP glaciers If PDO is positive and ENSO is negative mass balance will be negative on South Cascade Glacier and NCGCP glaciers If PDO is neutral then glacier annual balance will be negative or equilibrium on South Cascade Glacier and NCGCP glaciers South Cascade Glacier Reliability NCGCP Glacier Reliability 14 of 14 8 of 9 13 of 16 5 of 7 6 of 7 3 of 3 4 of 5 1 of 1 2 of 2 2 of 2 4 of 4 3 of 3 Total 43 of 48 22 of 25

Year PDOW ENSOW bn-sc Ba-NC PDOW ENSOW bn-ba Rule# Result 1960 0.34-0.17-0.50 p e n 3 yes 1961 0.30-0.23-1.10 p e n 3 yes 1962-1.64-0.79 0.20 n n p 2 yes 1963-0.62-0.71-1.30 n n n 2 no 1964-0.83 0.41 1.20 n p p 4 no 1965-0.63-0.64-0.17 n n e 2 yes 1966-0.42 1.06-1.03 n p n 4 yes 1967-0.73-0.52-0.63 n n n 2 no 1968-0.54-0.68 0.01 n n e 2 yes 1969-0.74 0.54-0.73 n p n 4 yes 1970 0.78 0.34-1.20 p p n 1 yes 1971-1.44-1.38 0.60 n n p 2 yes 1972-1.56-0.74 1.43 n n p 2 yes 1973-0.27 1.41-1.04 n p n 4 yes 1974-1.10-1.70 1.02 n n p 2 yes 1975-0.45-0.85-0.05 n n e 2 yes 1976-1.40-1.55 0.95 n n p 2 yes 1977 1.05 0.49-1.30 p p n 1 yes 1978 0.34 0.81-0.38 p p n 1 yes 1979-0.16 0.29-1.56 e e n 6 yes 1980 0.70 0.75-1.02 p p n 1 yes 1981 0.87 0.15-0.84 p e n 3 yes 1982 0.31-0.07 0.08 p e e 3 yes 1983 0.87 2.68-0.77 p p n 1 yes 1984 1.38-0.07 0.12 0.43 p e e-p 3 yes- yes 1985 0.73-0.45-1.20-0.37 p n n-n 5 yes-yes 1986 0.91-0.15-0.61-0.14 p e n-e 3 yes-yes 1987 1.78 1.29-2.06-0.63 p p n-n 1 yes-yes 1988 1.23 0.98-1.34 0.07 p p n-e 1 yes-no 1989-0.52-1.16-0.91-0.22 n n n-n 2 no-no 1990-0.30 0.26-0.11-0.44 n e e-n 2 yes-no 1991-1.37 0.33 0.07 0.33 n e e-p 2 yes-yes 1992 0.40 1.61-2.01-1.78 p p n-n 1 yes-yes 1993 0.66 0.80-1.23-0.82 p p n-n 1 yes-yes 1994 1.05 0.52-1.60-0.75 p p n-n 1 yes-yes 1995-0.50 0.99-0.69-0.02 n p n-e 4 yes-yes 1996 0.59-0.48 0.10 0.17 p n e-e 5 yes-yes 1997 0.28-0.20 0.63 0.54 p e p-p 3 no-yes 1998 1.30 2.46-1.86-1.68 p p n-n 1 yes-yes 1999-0.58-0.93 1.02 1.69 n n p-p 2 yes-yes 2000-1.16-0.95 0.38-0.09 n n p-e 2 yes-yes 2001-0.04-0.48-1.57-1.83 e n n-n 6 yes-yes 2002-0.67-0.05 0.55 0.12 n e p-e 2 yes-yes 2003 1.51 0.91-2.10-1.22 p p n-n 1 yes-yes 2004 0.54 0.34-1.65-1.78 p p n-n 1 yes-yes 2005 0.39 0.65-2.45-2.82 p p n-n 1 yes-yes 2006 -.08-0.43-1.45-0.98 e n n-n 6 yes-yes 2007 -.07 0.63-0.21-0.10 e p n-e 6 yes-yes 2008-1.02-1.17? 0..39 n n?-p 2 yes-yes 2009-1.35-0.60?? n n? 2?-?

2009 Glacier Forecast Positive mass balance due to negative PDO and ENSO climate index values from 10/1-4/1. However, April SWE at five benchmark Snotel Stations does not support a positive mass balance.

April 1 SWE at USDA Snotel Sites win North Cascades- consistent negative trend for 40 year plus time series.

Mean Nov.-March Precipitation Diablo Dam-Concrete-Increasing trend all time periods.

1936 1940 1944 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 SWE-PPT Ratio Ratio of April 1 snowpack to precipitation declining trend all periods 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1936 series= -0.0039x + 1.218 1944 series= -0.0049x + 1.1703 1950 series = -0.0053x + 1.1931 1965 series = -0.0071x + 1.2957 1980 series= -0.0051x + 1.1806 Year 1944 series 1950 series 1965 series 1980 series 1936 series Linear (1944 series) Linear (1950 series) Linear (1965 series) Linear (1980 series)

Cascade Mountains summer temperature, sustained warmth.

What we know for sure- Climate changes April 1 SWE/ppt ratio declining for all time periods. Precipitation has been increasing for all time periods. SWE has declined for all long term records but not for the most recent shorter term 30 years. Ablation season temperature has risen.

Glacier response to climate change A glacier with a sustained negative balance is out of equilibrium and will retreat to reestablish equilibrium. A glacier with sustained positive balance is also out of equilibrium, and will advance to reestablish equilibrium. 1880-1945: Rapid retreat of all glaciers. 1945-1975 period: Type 1 glaciers advance; Type 2 glaciers approach equilibrium; Type 3 glaciers continue retreat. 1975-2007: Increasing retreat of all North Cascade glaciers. Disappearance of a significant number of glaciers. The differing response of the three glacier types is due to the difference in response time.

Lower Curtis Glacier Type 1: 1985 and 2003- A vigorous glacier that began retreating in 1985 and is still retreating ( 170 meters since 1987) and thinning.

Easton Glacier Type 1: 1992 and 2008: 300 m of retreat in last 20 years after advance from 1955-1979

Lynch Glacier 1978 Type 2: Wide active front reaching Pea Soup Lake, which it filled in 1976. Lynch Glacier 2007 Type 2: Narrow inactive front no longer in contact with lake, has retreated 120 m since 1984. Note new outcrops in accumulation zone.

Whitechuck Glacier type 3: 1988-2005 North Branch gone, south branch 440 m retreat

Equilibrium versus Disequilibrium: A matter of survival Glacier retreat results in the loss of the low-elevation region of the glacier. Since higher elevations are cooler, the disappearance of the lowest portion of the glacier reduces overall ablation, increasing mass balance and potentially reestablishing equilibrium. However, if the mass balance of a significant portion of the accumulation zone is negative, it is in disequilibrium with the climate and will melt away without a climate change.

Glacier Disequilibrium Identification The key symptom of a glacier in disequilibrium is thinning in the accumulation zone. Without a persistent and consistent accumulation zone a glacier cannot survive.

An equilibrium response results in thinning predominantly in the lower reach of the glacier. Easton Glacier below has a substantial accumulation zone, limited thinning above the ELA.

Accumulation zone of Columbia Glacier, August 2005- No significant accumulation zone. Retreating 5 m year, 1 m/year of thinning in accumulation zone.

Symptoms for Disequilibrium Recession of accumulation zone margins. Accumulation zone thinning as evident by emergence of rock outcrops. Significant thinning in the accumulation zone measured by remapping.

Foss Glacier 1988 and 2005- accumulation zone recession

Columbia Glacier 1985-2006- accumulation zone recession

elevation (m) Columbia Glacier: Changes in longitudinal profile shows thinning from terminus to glacier head indicating no safe place to retreat to. 1800 Changes in surface elevation on Columbia Glacier Little Ice Age 1965 2002 1700 1600 1500 1400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Distance (km)

Accumulation Area Ratio Columbia Glacier- indicating a number of years with aar below 20.

Ice Worm Glacier 2003-2005- accumulation zone recession

Whitechuck Glacier 1976-2003 From Glacier Gap

Lyman Glacier marginal changes 1900-2008.

Lyall Glacier 1950 map outline and 2005 SPOT image

Glacier National Park: Jackson Glacier limited retreat since 1966, equilibrium response?

Glacier National Park: Shepard Glacier extensive accumulation zone retreat since 1966, disequilibrium.

Glacier National Park: Grinnell Glacier extensive retreat since 1966.

Glacier National Park: Harrison Glacier no evident accumulation zone changes since 1966.

Wind River Range: Gannett Glacier limited accumulation zone changes since 1966 disequilibrium?.

Wind River Range: Fremont Glacier no accumulation zone changes since 1966- equilibrium response.

Grasshopper Glacier, extensive accumulation zone marginal changes.

Wind River Range: Minor Glacier extensive accumulation zone retreat since 1966-disequilibrium response.

What we know for sure that is not so. All Glacier National Park glaciers will be gone by 2020-2030. 90% of the alpine glaciers in the Pacific Northwest are dying today. What is so? 2/3 of the glaciers are thinning in the accumulation zone indicating they cannot survive the current climate. Many of these glaciers are still quite thick and will not disappear within 30 years.

Conclusions The mean annual balance of -.48 m on North Cascade glaciers has led to an average thinning of 13 m, 20-40% of the entire glacier volume. All North Cascade, Wind River Range and Glacier National Park glaciers have retreated significantly since 1984. Approximately 1/3 of the glaciers in each range remain active and could achieve equilibrium with continued retreat, given the present climate. The remaining 2/3 of glaciers are in disequilibrium with current climate and will not survive, with the present climate. The result is less summer glacier runoff.