PHY 133 Lab 6 - Conservation of Momentum

Size: px
Start display at page:

Download "PHY 133 Lab 6 - Conservation of Momentum"

Transcription

1 Stony Brook Physics Laboratory Manuals PHY 133 Lab 6 - Conservation of Momentum The purpose of this lab is to demonstrate conservation of linear momentum in one-dimensional collisions of objects, and to compare the properties of elastic and inelastic collisions. Equipment air track small glider big glider computer interface box 2 photogates Introduction Conservation laws are very powerful tools in understanding physical phenomena. They allow us to predict the outcome of an event, given information about the input physical quantities. In the case of momentum conservation, which suggests that without any external forces acting on a system, the net momentum vector of that system remains constant, knowing the initial momenta of two colliding objects allows us to predict their final momenta after the collision. As one might expect, this basic principle underlies many important areas of research today, including a range of topics varying from improvement of safety features in automotive vehicles to investigating the properties of high-energy single particle collisions. To develop a fundamental understanding of the principle of linear momentum conservation, this experiment makes use of two gliders colliding along a frictionless air track. If the track is perfectly level, gravity does not affect their collisions, and with the air track's cushion of air beneath the gliders, friction does not affect them either. Hence, the two gliders form an isolated system along one dimension, since no external forces affect their motion. Despite the conservation of linear momentum applying universally to all isolated systems, however, there are two distinct types of collisions that may occur between objects in such a system. In the first, known as an elastic collision, the two objects interact and (sometimes) rebound off one another, conserving not only momentum but also energy. No energy is lost (or converted) into heat or sound or deformations of the objects; instead, all of the input kinetic energy equals all of the output kinetic energy. In the second type of collision, known as an inelastic collision, the two objects interact and stick together, still conserving the linear momentum of the isolated system, but no longer conserving the energy of the system. Instead, some input kinetic energy is converted into other forms like heat, sound, friction, etc., and so, the output kinetic energy of the objects is less than the input kinetic energy. This distinction will become clear when you see the physical outcome of each type of collision! 1/6

2 In order to verify the conservation of linear momentum, you will need to measure the quantities that constitute the initial and final momentum of the system, and compare their total values. As momentum depends on mass and velocity, you will measure the mass of each glider, as well as the initial and final velocities of each glider using the photogate system. However, since there are two gliders interacting in this lab, there must be two photogates present in order to measure their velocities, in case they rebound from one another after a collision. As in previous experiments, the velocity of each glider will be determined by dividing some characteristic distance in this case, the width of a metal tab mounted on top of each glider by the time interval during which that distance blocks and passes through a photogate. Before conducting any trials, you need some preliminary information. First, measure the width w of the metal tab atop the small glider, and obtain the mass m of the small glider using the digital scale in the lab room. Record these values in your notebook. Then, repeat these two measurements for the big glider, recording the width w and mass M. (Note: The width of the metal tab atop the small and big gliders should be identical, so approximate their widths as the same value, which should be approximately 5 cm.) If the gliders are labeled with numbers, you may find their mass values on the list of glider masses posted to the door at the front of the room. Assume that each width has an uncertainty of mm, and that each mass has an uncertainty of g. w σ w = 2 = = 1 Experimental Methods During this experiment, you will conduct three trials, each with a distinct type of collision between the two gliders. In the first trial, you will examine an elastic collision of the small glider colliding into a stationary big glider. In the second trial, you will examine an elastic collision of the large glider colliding into a stationary small glider. And, in the third trial, you will examine an inelastic collision of the big glider colliding into the small glider. To prepare for the measurements, make sure each photogate is connected to the two input ports on the interface box. Turn on the computer, and double-click the Desktop icon labeled Exp5_t1_t2, which is the LoggerPro file for this lab. A Sensor Confirmation window should appear, and you should check that both sensors are listed as Photogate, then click Connect for each of them. A window with a spreadsheet on the left (having columns labeled Time, State 1, State 2 ) should appear. To determine which photogate coincides with State 1 and which coincides with State 2, you should click the green Collect button at the top of the LoggerPro window and pass your finger through each photogate. Whichever State column fills with values corresponds to the photogate you are blocking. Do not confuse the two photogates, so place them, or label them with a numbered sheet of paper aside each, in a manner that will remind you of their State column numbers! Then, enter your value of the metal tab widths w in the same way as entering the d values of previous experiments: under the Data tab, click User Parameters, and enter your width w value (approximately 0.05 m) into each row labeled PhotogateDistance1 and PhotogateDistance2, adjusting the Places and Increment values if necessary. Then, click OK. You are now ready to collect some data! σ M σ m 2/6

3 Collision 1: Elastic (small glider into big glider) For the first collision, you will slide the small glider into a stationary big glider. Once your lab instructor/ta turns on the air track, place a glider on the track to see if it is level. If the glider starts to slide, adjust the screw beneath one end of the air track to level it so that the glider no longer slides on its own. Then, position the two photogates along the track, each one about 1/4 of the length of the track away from each end. The photogates should be tightened to their bases, and positioned so that their beams are perpendicular to the track. Adjust each photogate height so that, when a glider passes through, the metal tab atop the glider blocks the photogate beam. This setup should remain for all three collisions. Again, remember which photogate corresponds to State 1, and which corresponds to State 2. Now, position the big glider in between the two photogates, and carefully hold it steady with one finger if necessary. Place the small glider at one end of the air track, so that the spring bars (non-velcro ends) on the two gliders are facing one another. If either of the spring bars looks weak or disconnected from the glider, get the help of your lab instructor/ta. When you're ready, click the green Collect button on the LoggerPro window to begin a trial. Once the Waiting for data text appears, gently launch the small glider toward the stationary big glider at the center of the track. Carefully observe the direction of travel of each glider through the photogates, both before and after the collision. The small glider should rebound off the big glider, and pass through the same photogate it entered, whereas the big glider should exit through the other photogate. Note which glider passes through which photogate, by watching their entry and exit times on the LoggerPro spreadsheet. However, once each glider has exited through a photogate, you should pick it up and remove it from the track before it collides with the end of the track. If LoggerPro is still running, click the red STOP button at the top of the window. If the data collection ended before each glider exited through a photogate, repeat the trial and either increase the initial speed of the small glider or, under the Experiment tab in LoggerPro, click Data Collection, and increase the duration of the trials as necessary, then repeat the trial. The spreadsheet on the left of the screen should fill with time values and entry/exit values of 1 / 0 in the State columns. Considering which photogate corresponds to each State column, and which glider passed through each photogate, determine the initial and final velocities (and their directions) of each glider for this collision, by dividing the distance w by the difference of each pair of entry/exit times (consecutive State values of 1 then 0 ) on the spreadsheet. Define the positive direction as the direction of the initial velocity of the small glider. For this trial in particular, you should find a large positive initial velocity of the small glider, a smaller negative final velocity of the small glider, and a small positive final velocity of the big glider (with an initial velocity of 0 m/s, since it was stationary). You should begin creating a data table of quantities for this collision, starting with: Glider t i (s) t f (s) v i (m/s) v f (m/s) small big 0 where t i is the time interval during which the glider entered through a photogate (blanked out for the big glider here, since it was w initially at rest), t f is the time interval during which the glider exited through a photogate, = is the initial velocity of the glider before the collision (set to 0 m/s for the big glider here, since it was initially at rest), and after the collision. is the final velocity of the glider Calculate these values and record this table into your lab notebook. As you will see below, there will be many more columns to add to this table during your data analysis! Collision 2: Elastic (big glider into small glider) For the second collision, you will replicate most of what you did for the previous collision, except with a few changes. First, you will instead launch the big glider from outside the photogates into a stationary small glider between the two photogates. Repeat the measurement procedure as above, however, because the big glider will transfer so much of its momentum to the small glider, you must be prepared to catch and remove the small glider once it exits through a photogate after the collision. Also, as the big glider will likely retain its direction of motion, you should not expect it to rebound, and instead exit through the same photogate as the small glider. Again, watch the LoggerPro spreadsheet carefully to see which glider enters and exits each of the photogates. vf v i = w t f t i 3/6

4 As with the first collision, you should create a second data table of quantities for this collision, starting with: Glider t i (s) t f (s) v i (m/s) v f (m/s) small 0 big where all quantities are the same as in the table for the first collision, except the blanked out cell is now the initial time glider, since it was initially at rest this time, and its initial velocity is 0 m/s. for the small Calculate these values and record this table into your lab notebook. As you will see below, there will be many more columns to add to this table during your data analysis! Collision 3: Inelastic (big glider into small glider) For the third collision, you will still replicate most of what you did for the previous collisions, except with a few additional changes. As in the second collision, you will place the big glider outside of the photogates and launch it into a stationary small glider in between the two photogates. However, you must turn the gliders around, so that their ends with velcro attached are facing one another. This velcro will act as an adhesive to physically connect the two gliders after the collision, and simulate a perfectly inelastic collision, in which the two collided objects remain attached after the collision. Lastly, for this trial, you should only record two time intervals: the one during which the big glider enters through a photogate before the collision, and the one during which the small glider (with the big glider connected behind it) exits through a photogate after the collision. You don't need the time interval for the trailing big glider to exit through a photogate because it is already connected to the small glider, and so, its final velocity immediately after the collision should be the same as that of the small glider when it exits through the photogate. Hence, when creating the data table for this collision, it should be modified to look like this: Glider t i (s) t f (s) v i (m/s) v f (m/s) big big+small where all the quantities are the same as in the previous tables, except the row for the small glider is replaced with the final combination of gliders, and there are two blanked out cells: the initial time t i for the big+small glider combination, since it does not exist until after the collision, and the final time t f of the big glider, since only the combination of big+small gliders exists after the collision. In this table, the final time t f for the big+small combination is only the time duration during which the small glider blocks the photogate while exiting (because the big glider is attached and follows behind it with the same velocity). Analysis In order to verify the conservation of linear momentum, and then compare the properties of the two types of collisions (elastic vs. inelastic), some more quantities must be calculated for each of the trials. v i For each of the tables above, you used v = w to find the velocity of each glider; however, to calculate their uncertainties, you must t apply the multiplication/division rule from the uncertainty guide. Also, you may assume that there is negligible uncertainty in the measured times, so that σ t in all cases. Hence, the relative uncertainty of v should equal the relative uncertainty of w for all trials. 0 Next, the linear momentum of each object before or after the collision may be calculated using the general formula p = mv for a mass m moving at velocity v. Since momentum is a vector, and only the vector of momentum should be conserved in collisions, it is important to distinguish the negative momentum values (objects moving in the opposite direction) from the positive momentum values. You can then use the multiplication/division rule to propagate the uncertainties in the mass and the velocity for each case to find. σ p Lastly, the kinetic energy of each object is given by KE = 1 2 mv 2, where m is the object's mass and v is its velocity. Since kinetic energy is not a vector, you don't need to keep track of negative signs as strictly as with the linear momentum calculations. However, for t i 4/6

5 each case, you will need to propagate the uncertainties of the mass and velocity in order to find for each case. You should be able to work out the uncertainty propagation and calculations to complete the table for each collision, filling in each with the following columns (completed below for Collision 1): σ KE Glider t i t f v i σ vi v f σ vf p i σ pi p f σ pf KE i σ KEi KE f σ KEf (s) (s) (m/s) (m/s) (m/s) (m/s) (kg*m/s) (kg*m/s) (kg*m/s) (kg*m/s) (J) (J) (J) (J) small big You should work together with your lab partner through these calculations during lab, in case either of you becomes confused about a particular calculation. The lab instructor/ta will be there for hints and guidance, but not once you leave the lab room! If you're still unsure about a particular calculation, you may try using the number-crunching tool below. Inputting your measured values, it will calculate the remaining values based on the proper formulas and uncertainty propagations. However, you should not trust this calculator, and should attempt all stages of the calculations on your own. Using these values, you should then verify whether linear momentum and/or kinetic energy is conserved in each of your 3 collisions. To do this, you should employ the overlap method, in which you determine whether two estimated quantities may be equal based on the amount of overlap of their estimate ranges with uncertainties. If there is overlap, the two quantities may be equal within experimental error; if the ranges do not overlap, there is no significant evidence that the two quantities are in fact equal. Looking at your data and results, is there a distinction between the two types of collisions? If your results are slightly off from what you expect, what might have influenced your data during the trials? Discuss this all in your lab report! Even if you don't find conservation of quantities like p or KE when you expect them to be conserved, you may still compare how close to being conserved they are in one collision compared to another. Are the results for your elastic collisions closer to overlap than the results of your inelastic collision? Which quantities do you expect to be conserved in each of the two types (elastic and inelastic) of collisions? By making comparisons within your own data set, you can account for any errors that may have affected your entire experiment! Fill in the widths and masses and their uncertainties in the appropriate boxes below: w s = +/- m w b = +/- m m s = +/- kg m b = +/- kg Copy the results from your 3 experiments into the tables below: Table 1. Elastic Collision sliding small glider into big glider: Glider t i [s] t' i [s] Small Big Table 2. Elastic collision sliding big glider into small glider Glider t i [s] t' i [s] Small Big Table 3. Inelastic collision sliding big glider into small glider with velcro t i [s] t' i [s] Pre-collision 5/6

6 Post-collision submit phy133/lab6conservationmomentumlong.txt Last modified: 2016/10/28 13:31 (external edit) 6/6

Important! You need to print out the 2 page worksheet you find by clicking on this link and take it with you to your lab session.

Important! You need to print out the 2 page worksheet you find by clicking on this link and take it with you to your lab session. 1 PHY 123 Lab 5 - Linear Momentum (updated 10/9/13) In this lab you will investigate the conservation of momentum in one-dimensional collisions of objects. You will do this for both elastic and inelastic

More information

7-Nov-15 PHYS Elastic Collision. To study the laws of conservation of momentum and energy in an elastic collision. Glider 1, masss m 1.

7-Nov-15 PHYS Elastic Collision. To study the laws of conservation of momentum and energy in an elastic collision. Glider 1, masss m 1. Objective Elastic Collision To study the laws of conservation of momentum and energy in an elastic collision. Introduction If no net external force acts on a system of particles, the total linear momentum

More information

Pre-lab questions: Physics 1AL CONSERVATION OF MOMENTUM Spring Introduction

Pre-lab questions: Physics 1AL CONSERVATION OF MOMENTUM Spring Introduction Introduction You have a summer job at Amtrak with a group examining the crash between two trains. Your supervisor wants you to calculate the results of two different cases. The first is a perfectly inelastic

More information

o " tar get v moving moving &

o  tar get v moving moving & Introduction You have a summer job at Amtrak with a group examining the crash between two trains. Your supervisor wants you to calculate the results of two different cases. The first is a perfectly inelastic

More information

Air Track Collisions

Air Track Collisions PC1141 Physics I Air Track Collisions 1 Objectives Determine the velocity and momentum of each glider before and after the collision from which the total momentum of the system before and after the collision

More information

7 CONSERVATION OF LINEAR MOMENTUM II

7 CONSERVATION OF LINEAR MOMENTUM II 7 CONSERVATION OF LINEAR MOMENTUM II MEASUREMENTS AND CALCULATIONS OBJECTIVE To measure momentum before and after collisions as a way of investigating momentum conservation. INTRODUCTION ACTIVITY 1 This

More information

Motion 2. 1 Purpose. 2 Theory

Motion 2. 1 Purpose. 2 Theory Motion 2 Equipment Capstone, motion sensor, meter stick, air track+ 2 gliders, 2 blocks, and index cards. Air Tracks In this experiment you will be using an air track. This is a long straight triangular

More information

MEASUREMENT OF ACCELERATION Pre-Lab. Name: Roster#

MEASUREMENT OF ACCELERATION Pre-Lab. Name: Roster# MEASUREMENT OF ACCELERATION Pre-Lab Name: Roster# Date: 1. A tree is 15.0 m high and cast a shadow along the ground that is 30.0 m long. Draw a triangle that represents this situation. What angle does

More information

COLLISIONS ON AIRTRACK

COLLISIONS ON AIRTRACK Physics Deartment Mechanics Laboratory COLLISIONS ON AIRTRACK. Aim The aim of this exeriment is to illustrate the first two of Newton's Laws of Motion, and analyze the conservation of (linear) momentum

More information

Phys2010 Fall th Recitation Activity (Week 9) Work and Energy

Phys2010 Fall th Recitation Activity (Week 9) Work and Energy Phys2010 Fall 2015 5 th Recitation Activity (Week 9) Work and Energy Name Section Tues Wed Thu Fri 8am 10am 12pm 2pm 4pm 1. The figure at right shows a hand pushing a block as it moves through a displacement.

More information

Physics 1 Lab #2: Position - Time Graphing Download a pdf of this lab here. Physics 1 Position - Time Graphing Introduction: Graphing is one of the most common and useful ways to display data. Graphing

More information

Lab Skills: Introduction to the Air Track

Lab Skills: Introduction to the Air Track Lab Skills: Introduction to the Air Track 1 What is an air track? An air track is an experimental apparatus that allows the study of motion with minimal interference by frictional forces. It consist of

More information

EA-12 Coupled Harmonic Oscillators

EA-12 Coupled Harmonic Oscillators Introduction EA-12 Coupled Harmonic Oscillators Owing to its very low friction, an Air Track provides an ideal vehicle for the study of Simple Harmonic Motion (SHM). A simple oscillator assembles with

More information

Unit Activity Answer Sheet

Unit Activity Answer Sheet Probability and Statistics Unit Activity Answer Sheet Unit: Applying Probability The Lesson Activities will help you meet these educational goals: Mathematical Practices You will make sense of problems

More information

Rolling with Roller Coasters

Rolling with Roller Coasters Rolling with Roller Coasters Grade Level: 6 Total Time Required: Two 50 minute class sessions Prepared By: Brenda Capobianco, Todd Kelley, Dana Ruggiero, and Chell Nyquist Sources: National Science Digital

More information

Egg-streme Parachuting Flinn STEM Design Challenge

Egg-streme Parachuting Flinn STEM Design Challenge Egg-streme Parachuting Flinn STEM Design Challenge 6 07, Flinn Scientific, Inc. All Rights Reserved. Reproduced for one-time use with permission from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No

More information

LINEAR AIR TRACK CAT NO. PH0362A

LINEAR AIR TRACK CAT NO. PH0362A LINEAR AIR TRACK CAT NO. PH0362A Instruction Manual DESCRIPTION: 1500 mm Air track, a device with low friction, is used for kinematics experiments. Compressed air is injected into the cavity beneath the

More information

LAB 5-2 ENERGY CONSERVATION

LAB 5-2 ENERGY CONSERVATION NAME: PERIOD: LAB 5-2 ENERGY CONSERVATION QUESTION: What is energy and how does it behave? In this investigation, you will: 1. Discover the relationship between speed and height on a roller coaster. 2.

More information

University of Colorado, Colorado Springs Mechanical & Aerospace Engineering Department. MAE 4415/5415 Project #1 Glider Design. Due: March 11, 2008

University of Colorado, Colorado Springs Mechanical & Aerospace Engineering Department. MAE 4415/5415 Project #1 Glider Design. Due: March 11, 2008 University of Colorado, Colorado Springs Mechanical & Aerospace Engineering Department MAE 4415/5415 Project #1 Glider Design Due: March 11, 2008 MATERIALS Each student glider must be able to be made from

More information

ALLOMETRY: DETERMING IF DOLPHINS ARE SMARTER THAN HUMANS?

ALLOMETRY: DETERMING IF DOLPHINS ARE SMARTER THAN HUMANS? Biology 131 Laboratory Spring 2012 Name Lab Partners ALLOMETRY: DETERMING IF DOLPHINS ARE SMARTER THAN HUMANS? NOTE: Next week hand in this completed worksheet and the assignments as described. Objectives

More information

Study on impact force calculation formula. of ship lock gravity dolphin

Study on impact force calculation formula. of ship lock gravity dolphin 5th International Conference on Civil Engineering and Transportation (ICCET 2015) Study on impact force calculation formula of ship lock gravity dolphin Guilan Taoa, Jian Ruanb, Yingying Panc, Yajun Yand

More information

Today: using MATLAB to model LTI systems

Today: using MATLAB to model LTI systems Today: using MATLAB to model LTI systems 2 nd order system example: DC motor with inductance derivation of the transfer function transient responses using MATLAB open loop closed loop (with feedback) Effect

More information

Section 2 Gravitational Potential Energy and Kinetic Energy 40,000 J. This is because that was the total mechanical energy at the beginning. Mechanical energy in this case is the sum of GPE and KE. When

More information

Some of the numbered sections of the track are described to the right. The times correspond to a graph found on page 58.

Some of the numbered sections of the track are described to the right. The times correspond to a graph found on page 58. QUALITATIVE QUESTIONS If the track were stretch out so that it were entirely in a single plane, the profile would look like the diagram below. Some of the numbered sections of the track are described to

More information

MESA DAY CONTEST RULES

MESA DAY CONTEST RULES LEVEL: Grades 6-8 Wright Stuff Glider Competition MESA DAY CONTEST RULES 2017-2018 TYPE OF CONTEST COMPOSITION OF TEAM NUMBER OF TEAMS SPONSOR: OVERVIEW: Individual/Team 2-3 students per team 6TH; 2-3

More information

Stair Designer USER S GUIDE

Stair Designer USER S GUIDE Stair Designer USER S GUIDE Stair Designer-1 Stair Designer-2 Stair Designer The Stair Designer makes it easy to define and place custom stairs in your project. You can start the Stair Designer independently,

More information

MESA DAY CONTEST RULES (Revised 12/7/17)

MESA DAY CONTEST RULES (Revised 12/7/17) LEVEL: Grades 9 12 MESA DAY CONTEST RULES 2017-2018 (Revised 12/7/17) Wright Turn Glider Competition TYPE OF CONTEST COMPOSITION OF TEAM NUMBER OF TEAMS SPONSOR: OVERVIEW: Team 2-3 students per team 9

More information

Additional Boarding Setup and Daily Operations Guide

Additional Boarding Setup and Daily Operations Guide Additional Boarding Setup and Daily Operations Guide PetExec allows you to set holiday boarding prices, adjust kennel locations and boarding prices on a day-to-day basis, and accept boarding deposits that

More information

Physics Is Fun. At Waldameer Park! Erie, PA

Physics Is Fun. At Waldameer Park! Erie, PA Physics Is Fun At Waldameer Park! Erie, PA THINGS TO BRING: Amusement Park Physics Bring a pencil Bring a calculator Don t forget to bring this assignment packet Bring a stop watch, a digital watch, or

More information

TIMS to PowerSchool Transportation Data Import

TIMS to PowerSchool Transportation Data Import TIMS to PowerSchool Transportation Data Import Extracting and Formatting TIMS Data Creating the TIMS Extract(s) for PowerSchool Extracting Student Transportation Data from TIMS Formatting TIMS Transportation

More information

SIX FLAGS GREAT ADVENTURE PHYSICS DAY REVIEW & SAMPLES

SIX FLAGS GREAT ADVENTURE PHYSICS DAY REVIEW & SAMPLES DIRECTIONS: SIX FLAGS GREAT ADVENTURE PHYSICS DAY REVIEW & SAMPLES For your assignment you will answer Multiple Choice questions and Open Ended Questions. All students must do the Great American Scream

More information

ECLIPSE USER MANUAL AMXMAN REV 2. AUTOMETRIX, INC. PH: FX:

ECLIPSE USER MANUAL AMXMAN REV 2. AUTOMETRIX, INC.  PH: FX: ECLIPSE USER MANUAL AMXMAN-12-02 REV 2 AUTOMETRIX, INC. www.autometrix.com service@autometrix.com PH: 530-477-5065 FX: 530-477-5067 1: Concepts Awning Terminology All awnings have essential framing members:

More information

2. In terms of forces, explain why Batman The Ride uses a long shallow climb up the first incline instead of a short steep one.

2. In terms of forces, explain why Batman The Ride uses a long shallow climb up the first incline instead of a short steep one. QUALITATIVE QUESTIONS Batman The Ride 1. When you enter Batman The Ride, you walk the first 7.2 meters vertically to get on. What is the advantage to Six Flags St. Louis of having you do this? 2. In terms

More information

4 REPORTS. The Reports Tab. Nav Log

4 REPORTS. The Reports Tab. Nav Log 4 REPORTS This chapter describes everything you need to know in order to use the Reports tab. It also details how to use the TripKit to print your flight plans and other FliteStar route data. The Reports

More information

ultimate traffic Live User Guide

ultimate traffic Live User Guide ultimate traffic Live User Guide Welcome to ultimate traffic Live This manual has been prepared to aid you in learning about utlive. ultimate traffic Live is an AI traffic generation and management program

More information

E: W: avinet.com.au. Air Maestro Training Guide Flight Records Module Page 1

E: W: avinet.com.au. Air Maestro Training Guide Flight Records Module Page 1 E: help@avinet.com.au W: avinet.com.au Air Maestro Training Guide Flight Records Module Page 1 Contents Assigning Access Levels... 3 Setting Up Flight Records... 4 Editing the Flight Records Setup... 10

More information

Lesson 1: Rolling and moving with Science

Lesson 1: Rolling and moving with Science Question: How is science related to roller coasters? Interpret and apply Newton's three laws of motion. Describe phase transitions in terms of kinetic molecular theory Lesson 1: Rolling and moving with

More information

EA-75, EA-76 Precision Air Track

EA-75, EA-76 Precision Air Track EA-75, EA-76 Precision Air Track Description: Our Precision Air Track, a device with low friction, is used for kinematics experiments. Compressed air is injected into the cavity beneath the track. Since

More information

Copyright Thomson Financial Limited 2006

Copyright Thomson Financial Limited 2006 Getting Started Copyright Thomson Financial Limited 2006 All rights reserved. No part of this publication may be reproduced without the prior written consent of Thomson Financial Limited, 1 Mark Square,

More information

Controlled Cooking Test (CCT)

Controlled Cooking Test (CCT) Controlled Cooking Test (CCT) Prepared by Rob Bailis for the Household Energy and Health Programme, Shell Foundation (Not currently included in Shell HEH Stove Performance Protocols) The controlled cooking

More information

Specialty Cruises. 100% Tally and Strip Cruises

Specialty Cruises. 100% Tally and Strip Cruises Specialty Cruises 100% Tally and Strip Cruises Cumulative Tally Tree Category Cruises Stratified Cruises Tree or Log Average Cruises Multiple Cruisers on the same Stand Site Index Cruises Reproduction

More information

Please read this guide carefully. It tells you how to prepare your cutting plotter for production use in a few easy steps.

Please read this guide carefully. It tells you how to prepare your cutting plotter for production use in a few easy steps. OPERATING GUIDE for Secabo mini Cutting Plotter Congratulations on purchasing your Secabo mini cutting plotter! Please read this guide carefully. It tells you how to prepare your cutting plotter for production

More information

Assembling & Fitting Instruction August 2015

Assembling & Fitting Instruction August 2015 Assembling & Fitting Instruction August 2015 Wave Curtain Heading System Silent Gliss 6010, 6020, 6100, 6103, 6290, 6380, 6465 Silent Gliss 3840, 6120 Silent Gliss 5090, 5200, 5400 Silent Gliss 5100, 5600

More information

Natural Selection and Ring Gliders

Natural Selection and Ring Gliders Natural Selection and s Introduction: The purpose this lab is to use paper aircraft to model the process natural selection. A basic understanding aircraft design is not necessary to complete this lab but

More information

WHAT S NEW in 7.9 RELEASE NOTES

WHAT S NEW in 7.9 RELEASE NOTES 7.9 RELEASE NOTES January 2015 Table of Contents Session Usability...3 Smarter Bookmarks... 3 Multi-Tabbed Browsing... 3 Session Time Out Pop Up... 4 Batch No Show Processing...5 Selecting a Guarantee

More information

Table of Contents School Information 2 Note Page 3 Words of Physics 4 Gut Feelings at the Park 5 Helpful Formulas 6 Fun Facts 7 Heart Rate 8 Inverter

Table of Contents School Information 2 Note Page 3 Words of Physics 4 Gut Feelings at the Park 5 Helpful Formulas 6 Fun Facts 7 Heart Rate 8 Inverter Table of Contents School Information 2 Note Page 3 Words of Physics 4 Gut Feelings at the Park 5 Helpful Formulas 6 Fun Facts 7 Heart Rate 8 Inverter 9 Canyon Blaster 10-11 Extreme Ride Theater 12 BC Bus

More information

PEAK 1 GENERAL INFORMATION 1.1 THE CONCEPT 1.2 SAFETY 1.3 THE SPEED SYSTEM 2 THE EMERGENCY PARACHUTE 2.1 EMERGENCY PARACHUTE ASSEMBLY

PEAK 1 GENERAL INFORMATION 1.1 THE CONCEPT 1.2 SAFETY 1.3 THE SPEED SYSTEM 2 THE EMERGENCY PARACHUTE 2.1 EMERGENCY PARACHUTE ASSEMBLY PEAK 1 GENERAL INFORMATION 1.1 THE CONCEPT 1.2 SAFETY 1.3 THE SPEED SYSTEM 2 THE EMERGENCY PARACHUTE 2.1 EMERGENCY PARACHUTE ASSEMBLY 3 ADJUSTING YOUR PEAK 3.1 ADJUSTING THE SITTING POSITION 3.2 ADJUSTING

More information

Schedule Compression by Fair Allocation Methods

Schedule Compression by Fair Allocation Methods Schedule Compression by Fair Allocation Methods by Michael Ball Andrew Churchill David Lovell University of Maryland and NEXTOR, the National Center of Excellence for Aviation Operations Research November

More information

NJAA - NAARSO OUTREACH SEMINAR 2017

NJAA - NAARSO OUTREACH SEMINAR 2017 NJAA - NAARSO OUTREACH SEMINAR 2017 Design Verification Measuring the motion of an amusement ride allows verification of the ride design, construction and installation. It allows us to answer the question:

More information

Performance Indicator Horizontal Flight Efficiency

Performance Indicator Horizontal Flight Efficiency Performance Indicator Horizontal Flight Efficiency Level 1 and 2 documentation of the Horizontal Flight Efficiency key performance indicators Overview This document is a template for a Level 1 & Level

More information

SENIOR CERTIFICATE EXAMINATIONS

SENIOR CERTIFICATE EXAMINATIONS SENIOR CERTIFICATE EXAMINATIONS INFORMATION TECHNOLOGY P1 2017 MARKS: 150 TIME: 3 hours This question paper consists of 21 pages. Information Technology/P1 2 DBE/2017 INSTRUCTIONS AND INFORMATION 1. This

More information

Gas Conversion Kits and Instructions

Gas Conversion Kits and Instructions Gas Conversion Kits and Instructions INSTALLATION FORM RGM 432/433-GC (Version D.1) Obsoletes Form RGM 432/433-GC (Version D) APPLIES TO: Model FT and Model SFT All gas conversion must be done by a qualified

More information

Copyright Thomson Financial Limited 2002

Copyright Thomson Financial Limited 2002 Getting Started Copyright Thomson Financial Limited 2002 All rights reserved. No part of this publication may be reproduced without the prior written consent of Thomson Financial Limited, Skandia House,

More information

The Development and Analysis of a Wind Turbine Blade

The Development and Analysis of a Wind Turbine Blade ME 461: Finite Element Analysis Spring 2016 The Development and Analysis of a Wind Turbine Blade Group Members: Joel Crawmer, Edward Miller, and Eros Linarez Department of Mechanical and Nuclear Engineering,

More information

NEWMAR SERVICE SCHOOL

NEWMAR SERVICE SCHOOL NEWMAR SERVICE SCHOOL TRAINING INFORMATION GUIDELINE FOR FEBRUARY 2013 OUR PRODUCTS: NOVA DUAL PITCH AWNING G-2000/ G-1500 2 P a g e G-2085 G-5000 3 P a g e G-LINKS 4 P a g e NOVA/ G-2000/ G-1500 BASIC

More information

Mechanics of Frisbee Throwing

Mechanics of Frisbee Throwing 16-741 Mechanics of Manipulation Project Report Mechanics of Frisbee Throwing Debidatta Dwibedi (debidatd) Senthil Purushwalkam (spurushw) Introduction Frisbee is a popular recreational and professional

More information

ONLINE DELAY MANAGEMENT IN RAILWAYS - SIMULATION OF A TRAIN TIMETABLE

ONLINE DELAY MANAGEMENT IN RAILWAYS - SIMULATION OF A TRAIN TIMETABLE ONLINE DELAY MANAGEMENT IN RAILWAYS - SIMULATION OF A TRAIN TIMETABLE WITH DECISION RULES - N. VAN MEERTEN 333485 28-08-2013 Econometrics & Operational Research Erasmus University Rotterdam Bachelor thesis

More information

Biodiversity Studies in Gorongosa

Biodiversity Studies in Gorongosa INTRODUCTION Gorongosa National Park is a 1,570-square-mile protected area in Mozambique. Decades of war, ending in the 1990s, decimated the populations of many of Gorongosa s large animals, but thanks

More information

Kristina Ricks ISYS 520 VBA Project Write-up Around the World

Kristina Ricks ISYS 520 VBA Project Write-up Around the World VBA Project Write-up Around the World Initial Problem Online resources are very valuable when searching for the cheapest flights to any particular location. Sites such as Travelocity.com, Expedia.com,

More information

BIOMASS STOVE SAFETY PROTOCOL GUIDELINES

BIOMASS STOVE SAFETY PROTOCOL GUIDELINES BIOMASS STOVE SAFETY PROTOCOL GUIDELINES The process of designing stoves should include evaluation of safety. Seeing that there was no published standardized methodology for evaluating stove safety, Nathan

More information

IMPETUS: Engineering Workbook Model Roller Coaster Competition

IMPETUS: Engineering Workbook Model Roller Coaster Competition IMPETUS: Engineering Workbook Model Roller Coaster Competition School and Team Information This information can be completed at any time before the roller coaster competition School Name: Coach s Name:

More information

American Airlines Next Top Model

American Airlines Next Top Model Page 1 of 12 American Airlines Next Top Model Introduction Airlines employ several distinct strategies for the boarding and deboarding of airplanes in an attempt to minimize the time each plane spends

More information

Safety Analysis of the Winch Launch

Safety Analysis of the Winch Launch Safety Analysis of the Winch Launch Trevor Hills British Gliding Association and Lasham Gliding Society ts.hills@talk21.com Presented at the XXVIII OSTIV Congress, Eskilstuna, Sweden, 8-15 June 26 Abstract

More information

An Analysis of Dynamic Actions on the Big Long River

An Analysis of Dynamic Actions on the Big Long River Control # 17126 Page 1 of 19 An Analysis of Dynamic Actions on the Big Long River MCM Team Control # 17126 February 13, 2012 Control # 17126 Page 2 of 19 Contents 1. Introduction... 3 1.1 Problem Background...

More information

Setup. Assembling. Attaching the sharpening stone

Setup. Assembling. Attaching the sharpening stone Kit 1. Sharpener base. 2. Vertical rod. 3. Fixing ring. 4. Horizontal rod with pivot unit. 5. Sharpening stones set. 6. Black marker. 7. User Guide. Technical specs Knife sharpener dimensions (ready to

More information

Integrated Science. 5. Working electromagnet start switch. [Must be designed so the person starting it does

Integrated Science. 5. Working electromagnet start switch. [Must be designed so the person starting it does Integrated Science 2015 Amusement Park Challenge Purpose: A land developer in Snohomish has decided to build an amusement park on farm land near the river. They have all their permits in place. Now they

More information

Six Flags. Great. Adventure. Physics. Packet

Six Flags. Great. Adventure. Physics. Packet Great Adventure Packet 0 Six Flags Great Adventure Physics Packet Groups Members - Physics teacher s name: Great Adventure Packet 1 Equations Kinematics v = d/t v f = v i + at d = v i t + ½ at 2 v f 2

More information

REO Debris Removal and Cubic Yard (CYD)Training

REO Debris Removal and Cubic Yard (CYD)Training REO Debris Removal and Cubic Yard (CYD)Training What is Debris Objectives What is a Cubic Yard (CYD) Determining Personals vs. Debris Debris Removal Procedures Photo requirements and placards for the

More information

Thrill U. THE PHYSICS AND MATHEMATICS OF AMUSEMENT PARK RIDES. Middle School

Thrill U. THE PHYSICS AND MATHEMATICS OF AMUSEMENT PARK RIDES. Middle School Thrill U. THE PHYSICS AND MATHEMATICS OF AMUSEMENT PARK RIDES Middle School Copyrighted by Dr. Joseph S. Elias. This material is based upon work supported by the National Science Foundation under Grant

More information

Names of Lab Team Members. Scorpion Worksheet

Names of Lab Team Members. Scorpion Worksheet PRE-IB PHYSICS GROUP # Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS PHYSICS DAY AT BUSCH GARDENS General Guidelines: 1. Data collection is a group effort among your lab team. Completion of

More information

Wright Stuff Glider Competition

Wright Stuff Glider Competition MESA DAY CONTEST RULES 2018 2019 (Version 9.13.18) Wright Stuff Glider Competition LEVEL: Grades 6 and 7/8 TYPE OF CONTEST: COMPOSITION OF TEAM: NUMBER OF TEAMS: Team 2-3 students per team Preliminary

More information

Installation Instructions for the Rolltec Bravo Awning

Installation Instructions for the Rolltec Bravo Awning Installation Instructions for the Rolltec Bravo Awning Questions? Call Rolltec at 1-800-667-0474 Table of Contents Available installation brackets Side dimensions of various installations Determining installation

More information

ABSTRACT TIES TO CURRICULUM TIME REQUIREMENT

ABSTRACT TIES TO CURRICULUM TIME REQUIREMENT ABSTRACT This lesson uses the thrill of amusement park attractions to teach students how to analyze principles of motion. The Calculator Based Laboratory helps students record and analyze acceleration

More information

along a transportation corridor in

along a transportation corridor in Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy Presentation on the paper authored by F. Guzzetti and P. Reichenbach, 2004 Harikrishna Narasimhan Eidgenössische

More information

Grip Strength Comparison

Grip Strength Comparison Grip Strength Comparison Experiment 16 The importance of hand strength and function is evident in all aspects of our daily living, from eating and maintaining personal hygiene to keyboarding at the computer,

More information

Six Flags Great Adventure Physics Packet

Six Flags Great Adventure Physics Packet Great Adventure Packet 1 Six Flags Great Adventure Physics Packet Groups Members with Physics teacher s name: Great Adventure Packet 2 Equations Kinematics v = d/t v f = v i + at d = v i t + ½ at 2 v f

More information

LBH18BPK. Instruction Sheet

LBH18BPK. Instruction Sheet LBH18BPK Instruction Sheet Included: 1. Backpack (includes belt and pouch) 2. Bottle and Hose Attachment Assembly 3. 1 each disposable 1.5 gallon Chemical Storage Bag 4. 1 each 1.5 gallon Warm Water Cleanout

More information

Title ID Number Sequence and Duration. Age Level Essential Question Learning Objectives

Title ID Number Sequence and Duration. Age Level Essential Question Learning Objectives Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives Lesson Activity Design a Roller Coaster (2 sessions, 60-80 minutes) HS-S-C3 Session 1: Background and Planning Lead

More information

7. Demand (passenger, air)

7. Demand (passenger, air) 7. Demand (passenger, air) Overview Target The view is intended to forecast the target pkm in air transport through the S-curves that link the GDP per capita with the share of air transport pkm in the

More information

PRAJWAL KHADGI Department of Industrial and Systems Engineering Northern Illinois University DeKalb, Illinois, USA

PRAJWAL KHADGI Department of Industrial and Systems Engineering Northern Illinois University DeKalb, Illinois, USA SIMULATION ANALYSIS OF PASSENGER CHECK IN AND BAGGAGE SCREENING AREA AT CHICAGO-ROCKFORD INTERNATIONAL AIRPORT PRAJWAL KHADGI Department of Industrial and Systems Engineering Northern Illinois University

More information

Specialty Cruises. A. 100% Tally and Strip Cruises

Specialty Cruises. A. 100% Tally and Strip Cruises Specialty Cruises Page A. 100% Tally and Strip and Cumulative Tally Cruises 10-1 B. Tree Category Cruises 10-3 C. Stratified Cruises 10-4 D. Tree or Log Average Cruises 10-9 E. Multiple Cruisers on the

More information

Unit 3: The Knowledge Worker. You must have: Cover sheet, short treasury tag, KoolKiwi_exam.xlsx, Timings_ exam.txt

Unit 3: The Knowledge Worker. You must have: Cover sheet, short treasury tag, KoolKiwi_exam.xlsx, Timings_ exam.txt Pearson Edexcel International Advanced Level Applied ICT International Advanced Level Unit 3: The Knowledge Worker 22 26 May 2017 Time: 2 hours 30 minutes Paper Reference WIT03/01 You must have: Cover

More information

Title. Author(s)ISHII, K.; KIKUCHI, M.; SHIRAI, K. Issue Date Doc URL. Type. Note. File Information HIGASHI-HONGANJI HAKODATE BETSUIN

Title. Author(s)ISHII, K.; KIKUCHI, M.; SHIRAI, K. Issue Date Doc URL. Type. Note. File Information HIGASHI-HONGANJI HAKODATE BETSUIN Title STRUCTURAL CHARACTERISTICS OF A HISTORICAL REINFORCE HIGASHI-HONGANJI HAKODATE BETSUIN Author(s)ISHII, K.; KIKUCHI, M.; SHIRAI, K. Issue Date 2013-09-12 Doc URL http://hdl.handle.net/2115/54344 Type

More information

MiSP Topographic Maps Worksheet #1a SLOPE AND TOPOGRAPHIC CONTOURS

MiSP Topographic Maps Worksheet #1a SLOPE AND TOPOGRAPHIC CONTOURS MiSP Topographic Maps Worksheet #1a Name Date Introduction: SLOPE AND TOPOGRAPHIC CONTOURS Topographic contours are shown by lines of different widths. Each contour is a line of equal elevation; therefore,

More information

Analysis of Air Transportation Systems. Airport Capacity

Analysis of Air Transportation Systems. Airport Capacity Analysis of Air Transportation Systems Airport Capacity Dr. Antonio A. Trani Associate Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Fall 2002 Virginia

More information

Installation Instructions for the Rolltec Adalia X3M Extenda Awning

Installation Instructions for the Rolltec Adalia X3M Extenda Awning Installation Instructions for the Rolltec Adalia X3M Extenda Awning Questions? Call Rolltec at 1-800-667-0474 General Tool Requirements Table of Contents Available installation brackets Side dimensions

More information

Total Energy Part 2: The Unreliability of existing TE Variometers in Turbulent and Vertically Moving Air

Total Energy Part 2: The Unreliability of existing TE Variometers in Turbulent and Vertically Moving Air Total Energy Part 2: The Unreliability of existing TE Variometers in Turbulent and Vertically Moving Air François Ragot St. Auban, France Avia40p@aol.com Presented at the XXX OSTIV Congress, Szeged, Hungary,

More information

Energy and Roller Coasters

Energy and Roller Coasters 2ptsec printing Name Partners in this Project: Science Number: Group # Due _In Physics Lab Notebook Period Energy and Roller Coasters My dream rollercoaster Webquest Tasks Computer Engineer: Artistic Designer:

More information

High School Lesson Glider Design

High School Lesson Glider Design High School Lesson Glider Design Description Glider Design is the production of gliding products without the use of engines as demonstrated by the NASA space shuttle s return to the Earth s surface after

More information

Installation Guide: Round Trampoline

Installation Guide: Round Trampoline Trampolines & trampoline parts designed to survive in the harsh Oz climate. www.oztrampolines.com.au Installation Guide: Round Trampoline Safety Tips Here at Oz Trampolines we are passionate about your

More information

Installation Instructions for the Rolltec Physique XL Awning

Installation Instructions for the Rolltec Physique XL Awning Installation Instructions for the Rolltec Physique XL Awning Questions? Call Rolltec at 1-800-667-0474 General Tool Requirements Table of Contents Available installation brackets Side dimensions of various

More information

Pilot s Operating Handbook Supplement AS-04

Pilot s Operating Handbook Supplement AS-04 SECTION 9 Pilot s Operating Handbook Supplement GPS and Multifunctional Display FLYMAP L This AFM supplement is applicable and must be inserted into Section 9 of the Airplane Flight Manual when the FLYMAP

More information

Mazdaspeed6 Stage 1 Location 2 OCC Kit Install guide

Mazdaspeed6 Stage 1 Location 2 OCC Kit Install guide 1 Mazdaspeed6 Stage 1 Location 2 OCC Kit Install guide WARNING: By installing this Product, you understand that: The buyer/user assumes all risk as to quality, performance and use of these products and

More information

Big SHOT III Hybridization Oven

Big SHOT III Hybridization Oven Big SHOT III Hybridization Oven Models 230402 and 230402-2 Whether you are working with Northern Blots, Southern Blots, Microarrays or another application that requires incubation, you will find the Big

More information

FLICA Training! Horizon Air Flight Attendants!

FLICA Training! Horizon Air Flight Attendants! Horizon Air Flight Attendant FLICA Tutorial Page 1 FLICA Training Horizon Air Flight Attendants The new SAP process for Horizon Air Flight Attendants aims to add flexibility to schedules and will allow

More information

Montana Canvas Tent Structure Design

Montana Canvas Tent Structure Design Montana Tech Library Digital Commons @ Montana Tech Proceedings of the Annual Montana Tech Electrical and General Engineering Symposium Student Scholarship 2016 Montana Canvas Tent Structure Design Eric

More information

Total energy variometer 68-PVF-1. Description and installation

Total energy variometer 68-PVF-1. Description and installation Total energy variometer 68-PVF-1 Description and installation Description The variometer is based on the aneroid principle. But deviating from the conventionally used lever system with gear segment, this

More information

Aeronautics Math. Douglas Anderson Arellanes Junior High School Santa Maria-Bonita School District

Aeronautics Math. Douglas Anderson Arellanes Junior High School Santa Maria-Bonita School District Aeronautics Math Douglas Anderson Arellanes Junior High School Santa Maria-Bonita School District Description: We will review aircraft weight and balance and use our knowledge of equations to determine

More information

Price-Setting Auctions for Airport Slot Allocation: a Multi-Airport Case Study

Price-Setting Auctions for Airport Slot Allocation: a Multi-Airport Case Study Price-Setting Auctions for Airport Slot Allocation: a Multi-Airport Case Study An Agent-Based Computational Economics Approach to Strategic Slot Allocation SESAR Innovation Days Bologna, 2 nd December

More information

ipad mini 4 LTE Home Button Assembly Replacement

ipad mini 4 LTE Home Button Assembly Replacement ipad mini 4 LTE Home Button Assembly Replacement Replace the home button assembly in an ipad mini 4 LTE. Written By: Evan Noronha ifixit CC BY-NC-SA www.ifixit.com Page 1 of 25 INTRODUCTION Follow the

More information