K/U T/I RevIew Knowledge For each question, select the best answer from the four alternatives. K/U K/U

Size: px
Start display at page:

Download "K/U T/I RevIew Knowledge For each question, select the best answer from the four alternatives. K/U K/U"

Transcription

1 CHAPTER 3 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which of the following describes an inertial frame of reference? (3.1) K/U (a) one in which Newton s first law of motion holds true (b) one in which Newton s first law of motion does not apply (c) one in which Newton s second law of motion no longer applies (d) one in which Newton s third law of motion no longer applies 2. Which of the following is an example of a noninertial frame of reference? (3.1) K/U (a) a spinning centrifuge (b) a digital clock on a moving bus (c) an airplane moving with a constant velocity (d) a stationary DVD 3. Which of the following describes an object that follows a circular path at a constant speed? (3.2) K/U (a) inertial motion (b) uniform circular motion (c) motion with constant acceleration (d) motion with constant velocity 4. Which of the following would result if a tetherball on a rope came off the rope midway through its path around the pole? (3.3) K/U A (a) The ball would continue its circular path around the pole, eventually dropping with the force of gravity. (b) The ball would fly away from the pole in the straight-line direction it was travelling at the moment it came off the rope. (c) The ball would drop to the ground at the moment it came off the rope. (d) The ball would continue to move in its circular path around the pole but with a decreasing radius. 5. In which of the following directions is the centripetal force acting on an object undergoing circular motion? (3.3) K/U (a) in a straight line away from the centre of the object s path (b) in a straight line away from the object at a 908 angle (c) toward the centre of the circular path (d) along the object s path 6. Which of the following causes merry-go-round riders to feel as if they are being pushed away from the centre of the ride? (3.4) K/U (a) being in an inertial reference frame (b) the Coriolis force (c) centripetal acceleration (d) centrifugal force Indicate whether each statement is true or false. If you think the statement is false, rewrite it to make it true. 7. An amusement park ride moving down with a constant velocity is an example of a non-inertial frame of reference. (3.1) K/U 8. The law of inertia does not hold in a non-inertial frame of reference. (3.1) K/U 9. The direction of centripetal acceleration for a car on a banked curve is always down the incline parallel to the road surface. (3.2) K/U 10. The magnitude of an object s centripetal acceleration increases with the mass, the radius of the circular path, and the velocity of the object. (3.2) K/U 11. An observer looking down on a passenger in a car driving around a sharp curve would see that the passenger is being pushed by the car in the direction of the curve. (3.3) K/U A 12. The Moon is not an example of an object in uniform circular motion. (3.4) K/U A 13. Objects moving in a rotating frame of reference experience a force parallel to the velocity of the object in the rotating frame. (3.4) K/U 14. A Foucault pendulum demonstrates that Earth is not a rotating frame of reference. (3.4) K/U 15. A roller coaster car in free fall has no apparent weight. (3.4) K/U A Write a short answer to each question. 16. You are swinging your keys at the end of a lanyard in a horizontal circle around your head. What is the effect on the magnitude of the centripetal acceleration of the keys in each case? (3.2) K/U (a) You keep the radius of the circle constant but double the speed. (b) The speed of the keys stays the same, but you double the radius of the circle. 17. Two cars with the same mass are driving around a curved road at different velocities. Which car will experience a greater centripetal force, the one moving with the faster velocity or the one moving with the slower velocity? (3.3) K/U A 140 Chapter 3 Uniform Circular Motion NEL

2 18. How are centrifuges used in blood analysis? (3.4) K/U C 19. Identify the force that is causing the centripetal force in each situation. (3.3, 3.4) K/U (a) the Moon orbiting Earth (b) a car turning a corner (c) a rock twirled on the end of a string Understanding 20. While riding in a car heading east, you hold an accelerometer in your hand, like the one in Figure 1. The angle of the bead changes with the acceleration of the car. (3.1) K/U T/I C Figure vertical bead (a) How must you hold the accelerometer so that it correctly measures acceleration? Explain your answer. (b) Describe what happens to the bead when the vehicle is at rest. (c) Describe what happens to the bead when the vehicle is accelerating toward the east. (d) Describe what happens to the bead when the vehicle is moving with a constant velocity. (e) Describe what happens to the bead when the vehicle begins to slow down while moving toward the east. (f) The bead is at an angle of 138 from the vertical. Calculate the magnitude of the car s acceleration. 21. Determine the magnitude of the centripetal acceleration in each scenario. (3.2) K/U T/I A (a) A penny is 13 cm from the centre of a vinyl record. The record is playing on a turntable at 33.5 rpm. (b) A rodeo performer is twirling his lasso with uniform circular motion. One complete revolution of the rope takes 1.2 s. The distance from the end of his rope to the centre of the circle is 4.3 m. (c) An electron is travelling around a nucleus at m/s. The diameter of the electron s orbit is m. 22. You are operating a remote-controlled car around a circular path in an open field. The car is undergoing centripetal acceleration of 33.8 m/s 2. The radius of the car s path is 125 m. Calculate the car s speed. (3.2) K/U T/I A 23. WindSeeker, a 30-storey swing ride at Canada s Wonderland, ascends 91.7 m, spreads its metal arms, and swings riders at speeds up to 50.0 km/h. Calculate the ride s centripetal acceleration when the ride operates at maximum speed and at full swing with a diameter of 33.5 m. (3.2, 3.3) K/U T/I A 24. The track near the top of your favourite roller coaster is looped with a diameter of 20 m. When you are at the top, you feel as if you weigh one-third of your true weight. How fast is the roller coaster moving? (3.3) K/U T/I A 25. A locomotive engine of mass 3m, pulling an empty cargo car of mass m, is making a turn on a track. Assuming that the engine and cargo car are moving at the same speed, compare the centripetal forces acting on each. Explain your answer. (3.3) K/U T/I A 26. You are riding on Air Gliders, a thrill ride at Calaway Park, Calgary, that swings riders around in a circle while metal arms move the cars up and down. (3.3) K/U T/I A (a) What is the centripetal force experienced by a 90 kg rider swinging around at 20 m/s in a circle with a 16 m radius? (b) Calculate the force when the ride s arms close to a radius of 10 m. (c) Calculate the force when the ride slows to 5 m/s, keeping the radius at 10 m. 27. A discus thrower at a track meet hurls a 2.0 kg discus. She exerts a horizontal force of N on it as she spins. She rotates the disc, with her arm outstretched, in uniform circular motion, with a radius of 1.00 m. How fast will the discus travel when released? (3.4) K/U T/I A 28. A 2.0 kg jewellery box is sitting at the edge of a rotating shelf in a mechanical display case. The radius of the rotating shelf is 0.50 m. Calculate the centripetal force when (a) the shelf is rotating at 1.0 rpm (b) the shelf frequency increases to 5.0 rpm (c) the shelf frequency decreases to 0.50 rpm (3.3, 3.4) K/U T/I A 29. On the Drop Tower at Canada s Wonderland, riders free-fall 23 storeys at speeds close to 100 km/h. At some point during the ride, a person experiences a force equivalent to 2g and the ride s seat is pushing up with a force of N. What is the person s weight at this point? (3.4) K/U T/I A NEL Chapter 3 Review 141

3 Analysis and Application 30. The blades of a blender of radius m are spinning at a rate of 60 rpm. What is the centripetal acceleration of a single point on the edge of one of the blades? (3.2) K/U T/I A 31. The rock in Figure 2 is moving with uniform circular motion in a horizontal circle on a frictionless surface. The string is old and can only exert a maximum force of 25 N on the rock. Determine the minimum speed the rock can have without breaking the string. (3.3) K/U T/I A m 1.5 kg r 0.50 m Figure A roller coaster car is near the bottom of its track, as shown in Figure 3. At this point, the normal force on the roller coaster is 3.5 times its weight. The speed of the roller coaster is 26 m/s. Determine the radius of the track s curvature. (3.3) T/I A Figure 3 v r 33. A 35 kg child sits on a Ferris wheel that has a diameter of 22 m. The wheel rotates 3.5 times per minute. (3.3) T/I C A (a) What force does the seat exert on the child at the top of the ride? (b) What force does the seat exert on the child at the bottom of the ride? 34. A rock with a mass of 1.5 kg attached to a light rod with a length of 2.0 m twirls in a vertical circle as shown in Figure 4. The speed v of the rock is constant; that is, it is the same at the top and at the bottom of the circle. The tension in the rod is zero when the rock is at its highest point. Calculate the tension when the rock is at the bottom. (3.3) T/I A side view (a) Figure 4 y x (b) y F T mg x (c) mg y F T x 35. A rock tied to a string spins in a circle of radius 1.5 m, as shown in Figure 5. The speed of the rock is 10.0 m/s. (3.3) K/U T/I C A Figure 5 r (a) Draw two simple diagrams: one that shows a top view and one that shows a side view of the motion of the rock. (b) Draw an FBD for the rock. (c) Determine the total force on the rock directed toward the centre of its circular path. Express your answer in terms of the (unknown) tension in the string, F T. (d) Apply Newton s second law along the vertical and the horizontal directions to calculate the angle the string makes with the horizontal. 36. A car with a mass of kg is travelling without slipping on a flat, curved road with a radius of curvature of 35 m. The speed of the car is 12 m/s. Calculate the frictional force between the road and the tires. (3.3) K/U T/I A 37. A stone with a mass of 0.30 kg is tied to a string with a length of 0.75 m and is swung in a horizontal circle with speed v. The string has a breaking-point force of 50.0 N. What is the largest value v can have without the string breaking? Ignore any effects due to gravity. (3.3) K/U T/I A 38. A hammer thrower is swinging a ball on a rope. The mass of the ball is 70.0 kg, and it is swinging at 2.0 m/s in a circle of radius 1.0 m. Calculate the centripetal force. (3.3) K/U T/I A 39. A 30.0 kg child is riding a bicycle around a circular driveway with a diameter of 20.0 m. He is experiencing 32 N of centripetal force. How fast is the child cycling? (3.3) K/U T/I A 40. Roller coaster cars are travelling around a clothoid loop in the track at 55 m/s. The cars have a mass of 125 kg, and the loop has a radius of 25 m. Calculate the centripetal force. (3.3, 3.5) K/U T/I A 41. A child is operating a remote-controlled boat around the edge of a pond with a radius of 2 m. The boat is moving with a speed of 2 m/s. The centripetal force is 16 N. (3.3) K/U T/I A (a) Determine the mass of the boat. (b) In order to decrease the centripetal force to 4 N, how fast should the boat go? 142 Chapter 3 Uniform Circular Motion NEL

4 42. Figure 6 shows a car travelling around a curve in the road. (3.3.) K/U T/I A r F c v Figure 6 (a) If the car doubles its speed, how much of an increase in centripetal force from friction is needed to keep the car in a circular path? (b) What would happen to the car s path if the road was covered in ice and there was no friction? 43. Determine the centripetal force needed to keep a 105 kg motorboat moving in a circular path on a lake at 7.0 m/s. The radius of the path s curve is 15 m. (3.3) K/U T/I A 44. Two masses are tied together by strings as shown in Figure 7 and swung around in a horizontal circle with a period of 2.00 s on a frictionless surface. Mass 1 is 3.00 kg, and mass 2 is 5.00 kg. Determine the tension in each string. (3.3) K/U T/I 46. In an amusement park ride, a motor rotates two platforms with a period of 4.0 s in a vertical circle (Figure 9). The mass of platform 1 is 1200 kg, and the mass of platform 2 is 1800 kg. Calculate the tension in each support when the platforms are at the bottom as shown in the figure. (3.3, 3.4) K/U T/I A platform 1 platform 2 Figure 9 support A 4.0 m support B 3.0 m 47. The amusement park ride shown in Figure 10 is a large, rapidly spinning cylindrical room with a radius of 3.0 m. The riders stand up against the wall, and the room starts to spin. Once the room is spinning fast enough, the riders stick to the wall. Then the floor slowly lowers, but the riders do not slide down the wall. Assume the coefficient of friction between the wall and the riders is (3.3, 3.4) K/U T/I C A string A 4.00 m string B 2.00 m Figure 7 mass 2 mass Mass 1 (2.0 kg) sits on top of mass 2 (5.0 kg), which rests on a frictionless surface (Figure 8). The coefficient of static friction between mass 1 and mass 2 is A string of length 5.0 m is tied to mass 2, and both masses are swung around in a horizontal circle. Calculate (a) the maximum speed of the masses and (b) the tension in the string. (3.3) K/U T/I Figure 10 (a) Draw an FBD of a person on the ride. What force or forces cause the net force on the rider? (b) Calculate the minimum speed of the rider required to keep the person stuck to the wall when lowering the floor. 48. A 6.0 kg object is attached to two 5.0 m long strings (Figure 11) and swung around in a circle at 12 m/s. Determine the tension in the two strings, and explain why the tensions are not the same. (3.3, 3.4) K/U T/I A Figure 8 mass 1 mass m 5.0 m A B 5.0 m Figure 11 NEL Chapter 3 Review 143

5 49. A race car driver wants to complete two laps in 1 min around a circular track with a 30.0 m radius. The combined mass of her body and her car equals kg. What is the magnitude of centrifugal force she will feel? (3.4) K/U T/I A 50. A top-loading washing machine with 2.0 kg of clothes inside is on spin cycle. The tub, with a radius of 0.35 m, is rotating at 50.0 rpm. Determine the centripetal force acting on the clothes. (3.4) K/U T/I A 51. A coin is resting on a vinyl record. The coin slips off the record when the rotation rate is 0.30 rps (rotations per second). Determine the coefficient of static friction between the coin and the record. The radius of the record is 15 cm. (3.4) K/U T/I A 52. A roller coaster car is at the lowest point on its track, where the radius of curvature is 20.0 m. At this point, the apparent weight of a passenger on the roller coaster is 3.00 times her true weight. What is the speed of the roller coaster? (3.4, 3.5) K/U T/I A 53. A space station is rotating at 12 m/s. The artificial gravity is equal to 50.0 % of that found on Earth. What is the radius of the station? (3.4) K/U T/I A 54. A bucket of water is attached to a rope and is being swung around in a vertical circle. (3.4) K/U T/I A (a) What force is responsible for keeping the bucket moving in a circle? (b) Identify the source of the force in (a). (c) The water-filled bucket has a mass of 15 kg and is swinging at a velocity of 2 m/s in a circle with a radius of 2 m. Calculate the magnitude of the force. 55. A popular circus act features a daredevil motorcycle rider encased in a spherical metal cage, as shown in Figure 12. The diameter of the cage is 4 m. (3.4) K/U T/I A Figure 12 (a) A 65 kg performer on a 95 kg motorcycle rides horizontally around the middle of the cage. He completes 22 loops in one minute. Calculate the coefficient of friction he needs between his tires and the cage to keep him in place. (b) How many loops will the rider make per second? (c) If the performer rides around the cage in vertical loops at 6 m/s, what force is needed at the top and bottom of the cage to support his mass? 56. Two skaters are performing on ice. One skater is gripping the other s hand and spinning her in an arc around his body. The distance between the skaters grip and the outer edge of the arc is 3.0 m. The skater is being swung around at 2.0 rpm and has a mass of 54 kg. Calculate the centripetal force. (3.4) K/U T/I A 57. A horse trainer is leading a 450 kg horse on a long lead rope around a training pen, making one rotation around the ring per minute. The centripetal force on the horse is 48 N. Determine the length of the lead rope. (3.4) K/U T/I A 58. Consider the performer in Figure 13. How fast must the horse go around a circus ring with a radius of 25 m in order to maintain constant centripetal acceleration of 1.0g? Give your answer in kilometres per hour. (3.5) K/U T/I A Figure 13 Evaluation 59. Using your knowledge of forces, explain the following in a format of your choice. (3.1, 3.2, 3.3) T/I C (a) centrifugal force (b) Coriolis force (c) fictitious forces, and why they are called that 60. Describe the effects on a person in each of the following frames of reference. (3.1) T/I C A (a) riding the elevator to the top of the CN Tower in Toronto (b) free falling in a skydive from an airplane 61. Create a three-column table, either electronically or on paper. (3.2) K/U T/I C A (a) In the first column, list the three equations for centripetal acceleration. In the second column, identify the variables found in each equation. In the third column, identify the variables not found in each equation. Give your table a title. (b) In your own words, briefly describe how each equation was derived. 144 Chapter 3 Uniform Circular Motion NEL

6 62. A rodeo performer spins a lasso above her head. (3.2) T/I C A (a) Explain the purpose of twirling the rope before throwing it. (b) Describe how she could maximize the distance the rope can be thrown. (c) Describe the path the rope will take once she releases it. 63. Explain how the principles of centripetal force are used to make safer driving conditions. (3.3) T/I C A 64. How would you explain the concepts of artificial gravity to a fellow student who has not taken physics? (3.4) T/I C A Reflect on Your Learning 65. What did you learn in this chapter that was surprising? Explain your answer. T/I C 66. In this chapter, you learned how to solve some types of centripetal force problems. What questions do you still have about solving centripetal force problems? T/I C A 67. Prepare a Know Want to Know What You Learned (K-W-L) chart on the topic of artificial gravity or another topic from this chapter. T/I C A 68. How has your understanding of uniform circular motion changed? Did you learn anything particularly relevant to you on this topic? T/I C A 69. Consider the different topics you have studied in this chapter. Choose one that you feel has an important impact on your life. Write a one-page report about the topic, explaining why it is important to you. What else would you like to know about this topic? How could you go about learning this? T/I C A Research WEB LINK 70. Research the history of roller coasters, showing how the designs have changed over the centuries. Present your findings in a timeline, on paper, as a Wiki page, as an electronic slide presentation, or in another format of your choosing. T/I C A 71. Research the effects of the Coriolis force in meteorology. In your own words, describe the effect using the movement of a hurricane as an example. C A 72. Research the effects of uniform circular motion on growing plants. What effects would a continuously spinning pot of soil have on the grass seed planted in it? How would the grass grow differently? T/I C A 73. Gas centrifuge technology is an emerging technology. The technology enriches mined uranium to levels at which it can be used to generate nuclear power. The use of centrifuges increases the concentration of the isotope uranium-235 in the uranium. Research the various applications of gas centrifuge technology. How has it affected the efficiency of energy production? T/I C A 74. Astronauts undergo rigorous physical training to be able to function in the altered environments in space. Research astronaut training. How has astronaut training changed from the first piloted space mission to today s missions? What are the health risks associated with space flight and travel? What technologies are in development to help astronauts prepare for longer space travel than has ever been attempted? T/I C A 75. The centrifuge is an integral piece of machinery in many industries, from oil production to laundry applications to the dairy industry. T/I C A (a) Choose an industry, and trace the use of centrifuges in the industry over the past century. How have centrifuges contributed to advances in the industry? (b) List two major implications of the use of centrifuges on society. 76. Research the track layout and dimensions of the Behemoth, a ride at Canada s Wonderland. Prepare a concept map on all the possible forces riders will experience at each new twist in the track. T/I C A 77. Research windmills and wind turbines, how they work, and their effect on the environment. T/I C A (a) How do windmills and wind turbines use the principles of dynamics and circular motion to generate power? Include a simple diagram in your answer. (b) What is the environmental impact of wind power and wind farms? 78. Using an online resource, design your own roller coaster. List each design feature you have included and explain your reasoning. Explain how you have kept the ride exciting while keeping it safe for customers. Decide on a theme for your roller coaster, and try to include the theme in your design. K/U T/I C A NEL Chapter 3 Review 145

MATH & SCIENCE DAYS STUDENT MANUAL

MATH & SCIENCE DAYS STUDENT MANUAL MATH & SCIENCE DAYS STUDENT MANUAL CONSCIOUS COMMUTING As you ride to Six Flags Great America be conscious of some of the PHYSICS on the way. A. STARTING UP THINGS TO MEASURE: As the bus pulls away from

More information

Physics Is Fun. At Waldameer Park! Erie, PA

Physics Is Fun. At Waldameer Park! Erie, PA Physics Is Fun At Waldameer Park! Erie, PA THINGS TO BRING: Amusement Park Physics Bring a pencil Bring a calculator Don t forget to bring this assignment packet Bring a stop watch, a digital watch, or

More information

SIX FLAGS GREAT ADVENTURE PHYSICS DAY REVIEW & SAMPLES

SIX FLAGS GREAT ADVENTURE PHYSICS DAY REVIEW & SAMPLES DIRECTIONS: SIX FLAGS GREAT ADVENTURE PHYSICS DAY REVIEW & SAMPLES For your assignment you will answer Multiple Choice questions and Open Ended Questions. All students must do the Great American Scream

More information

Math in Motion Idlewild & SoakZone Copyright

Math in Motion Idlewild & SoakZone Copyright STUDENT PACKET MATH IN MOTION Your visit to Idlewild & SoakZone is an opportunity to not only have fun, but learn about math and the use of technology throughout the park. Use our Outdoor Classroom to

More information

State Fair Field Trip

State Fair Field Trip State Fair Field Trip Each student must complete this and three of the other activities at the fair to receive credit. Student Name Teacher Key Questions - Quantitative As you ride to the fair grounds

More information

NASA Connection Free-Fall Rides

NASA Connection Free-Fall Rides NASA Connection Free-Fall Rides A free-fall ride, like the one pictured here, lets you fall for about 1.5 seconds. Once the car is lifted to the top and released, the force of gravity pulls it toward the

More information

The Niagara SkyWheel Teacher Resource Guide Grades 9-12

The Niagara SkyWheel Teacher Resource Guide Grades 9-12 The Niagara SkyWheel Teacher Resource Guide Grades 9-12 Welcome to The Niagara SkyWheel! Arrival and Entry Please allow ample time for parking and obtaining tickets. Safety To have the best adventure possible,

More information

Title ID Number Sequence and Duration. Age Level Essential Question Learning Objectives

Title ID Number Sequence and Duration. Age Level Essential Question Learning Objectives Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives Lesson Activity Design a Roller Coaster (2 sessions, 60-80 minutes) HS-S-C3 Session 1: Background and Planning Lead

More information

Table of Contents School Information 2 Note Page 3 Words of Physics 4 Gut Feelings at the Park 5 Helpful Formulas 6 Fun Facts 7 Heart Rate 8 Inverter

Table of Contents School Information 2 Note Page 3 Words of Physics 4 Gut Feelings at the Park 5 Helpful Formulas 6 Fun Facts 7 Heart Rate 8 Inverter Table of Contents School Information 2 Note Page 3 Words of Physics 4 Gut Feelings at the Park 5 Helpful Formulas 6 Fun Facts 7 Heart Rate 8 Inverter 9 Canyon Blaster 10-11 Extreme Ride Theater 12 BC Bus

More information

Phys2010 Fall th Recitation Activity (Week 9) Work and Energy

Phys2010 Fall th Recitation Activity (Week 9) Work and Energy Phys2010 Fall 2015 5 th Recitation Activity (Week 9) Work and Energy Name Section Tues Wed Thu Fri 8am 10am 12pm 2pm 4pm 1. The figure at right shows a hand pushing a block as it moves through a displacement.

More information

Xcalibur. b. Where are the riders torsos nearly vertical with heads down? c. Where are the riders torsos nearly horizontal relative to the ground?

Xcalibur. b. Where are the riders torsos nearly vertical with heads down? c. Where are the riders torsos nearly horizontal relative to the ground? QUALITATIVE QUESTIONS: 1. Watch the ride to see how the orientation of the riders changes. Use the pictures on this page to help you name and describe the positions of riders oriented in the following

More information

Names of Lab Team Members. Scorpion Worksheet

Names of Lab Team Members. Scorpion Worksheet PRE-IB PHYSICS GROUP # Name: DEVIL PHYSICS Period: Date: BADDEST CLASS ON CAMPUS PHYSICS DAY AT BUSCH GARDENS General Guidelines: 1. Data collection is a group effort among your lab team. Completion of

More information

Physics Activity Guide

Physics Activity Guide Physics Activity Guide 2 TABLE OF CONTENTS Earthbound Astronauts 3 Mechanics of Motion 4 Angles and Arcs 5 Angles and Arcs II 6 Viking Voyager 7 Bamboozler 8 Zulu 9 Finnish Fling 10 Autobahn 11 Scrambler

More information

ZIP LINE CHALLENGE. DESIGN CHALLENGE Build a device that can transport a ping-pong ball from the top of a zip line to the bottom in 4 seconds or less.

ZIP LINE CHALLENGE. DESIGN CHALLENGE Build a device that can transport a ping-pong ball from the top of a zip line to the bottom in 4 seconds or less. Grades 3 5, 6 8 20 60 minutes ZIP LINE CHALLENGE DESIGN CHALLENGE Build a device that can transport a ping-pong ball from the top of a zip line to the bottom in 4 seconds or less. SUPPLIES AND EQUIPMENT

More information

GRADE 7 & 8 SCIENCE TABLE OF CONTENTS. Amusement Ride Activities page 22. Park Exploration page 71. Consumer Survey page 71

GRADE 7 & 8 SCIENCE TABLE OF CONTENTS. Amusement Ride Activities page 22. Park Exploration page 71. Consumer Survey page 71 GRADE 7 & 8 SCIENCE TABLE OF CONTENTS In-School Preparation (includes Curriculum Correlations) page 2 Amusement Ride Activities page 22 Park Exploration page 71 Consumer Survey page 71 Building Project

More information

Six Flags. Great. Adventure. Physics. Packet

Six Flags. Great. Adventure. Physics. Packet Great Adventure Packet 0 Six Flags Great Adventure Physics Packet Groups Members - Physics teacher s name: Great Adventure Packet 1 Equations Kinematics v = d/t v f = v i + at d = v i t + ½ at 2 v f 2

More information

Some of the numbered sections of the track are described to the right. The times correspond to a graph found on page 58.

Some of the numbered sections of the track are described to the right. The times correspond to a graph found on page 58. QUALITATIVE QUESTIONS If the track were stretch out so that it were entirely in a single plane, the profile would look like the diagram below. Some of the numbered sections of the track are described to

More information

Roller Coasters! PRE READING TASK. Physics Gr11A

Roller Coasters! PRE READING TASK. Physics Gr11A Name: Class: Date: Roller Coasters! Grade 11A Science Related Reading/Physics Physics Gr11A A cat jumps over a fence. How does the dog s potential energy change on the way up? How does the dog s potential

More information

Six Flags Great Adventure Physics Packet

Six Flags Great Adventure Physics Packet Great Adventure Packet 1 Six Flags Great Adventure Physics Packet Groups Members with Physics teacher s name: Great Adventure Packet 2 Equations Kinematics v = d/t v f = v i + at d = v i t + ½ at 2 v f

More information

Spring accelerometers

Spring accelerometers Spring accelerometers A spring accelerometer is a transparent plexiglass tube containing a small mass connected to two identical springs fixed to either end of the tube, with which we can measure the forces

More information

5.2 Angular Motion. Motion and Force. Objective. Materials. Introduction /// TEACHER ALERT /// Directed Instruction. Content

5.2 Angular Motion. Motion and Force. Objective. Materials. Introduction /// TEACHER ALERT /// Directed Instruction. Content 5.2 Angular Motion Motion and Force Objective Students will define angular motion and distinguish between rotational and periodic motion. Materials Blackline Master 5.2A Discover: Amusement Parks Blackline

More information

Mr. Freeze. as viewed from the top of the ferris wheel:

Mr. Freeze. as viewed from the top of the ferris wheel: QUALITATIVE QUESTIONS Many of the questions that follow refer to the graphs of data collected when riding with high tech data collection vests. With your I.D., you can borrow a vest without charge just

More information

Paper Roller Coasters Engineering Journal. Name: Group: Period: Due date:

Paper Roller Coasters Engineering Journal. Name: Group: Period: Due date: Paper Roller Coasters Engineering Journal Name: Group: Period: Due date: Problem: You are a roller coaster manufacturer competing for a bid to build a roller coaster for an amusement park. Your task is

More information

Egg-streme Parachuting Flinn STEM Design Challenge

Egg-streme Parachuting Flinn STEM Design Challenge Egg-streme Parachuting Flinn STEM Design Challenge 6 07, Flinn Scientific, Inc. All Rights Reserved. Reproduced for one-time use with permission from Flinn Scientific, Inc. Batavia, Illinois, U.S.A. No

More information

Coaster Creators. Science/Math Module. Grades 6-8

Coaster Creators. Science/Math Module. Grades 6-8 Science/Math Module Grades 6-8 By Virginia Barrett MAP Team Member Lathrop R-II School District Northwest Regional MAP Center 1 Purpose: This module can be used as the culminating activity for a unit of

More information

Six Flags. Great. Adventure. Physics. Packet

Six Flags. Great. Adventure. Physics. Packet Great Adventure Packet 0 Six Flags Great Adventure Physics Packet Groups Members - Physics teacher s name: Great Adventure Packet 1 MAKING MEASUREMENTS AND CALCULATING ANSWERS Most measurements can be

More information

Section 2 Gravitational Potential Energy and Kinetic Energy 40,000 J. This is because that was the total mechanical energy at the beginning. Mechanical energy in this case is the sum of GPE and KE. When

More information

Thrill U. THE PHYSICS AND MATHEMATICS OF AMUSEMENT PARK RIDES. Middle School

Thrill U. THE PHYSICS AND MATHEMATICS OF AMUSEMENT PARK RIDES. Middle School Thrill U. THE PHYSICS AND MATHEMATICS OF AMUSEMENT PARK RIDES Middle School Copyrighted by Dr. Joseph S. Elias. This material is based upon work supported by the National Science Foundation under Grant

More information

Pre-lab questions: Physics 1AL CONSERVATION OF MOMENTUM Spring Introduction

Pre-lab questions: Physics 1AL CONSERVATION OF MOMENTUM Spring Introduction Introduction You have a summer job at Amtrak with a group examining the crash between two trains. Your supervisor wants you to calculate the results of two different cases. The first is a perfectly inelastic

More information

Math in Motion Idlewild & SoakZone Copyright

Math in Motion Idlewild & SoakZone Copyright STUDENT PACKET MATH IN MOTION Your visit to Idlewild & SoakZone is an opportunity to not only have fun, but learn about math and the use of technology throughout the park. Use our Outdoor Classroom to

More information

GRADE 5 SCIENCE TABLE OF CONTENTS. In School Preparation page 2. Amusement Ride Activities page 13. Other Activities page 49

GRADE 5 SCIENCE TABLE OF CONTENTS. In School Preparation page 2. Amusement Ride Activities page 13. Other Activities page 49 GRADE 5 SCIENCE TABLE OF CONTENTS In School Preparation page 2 Amusement Ride Activities page 13 Other Activities page 49 CANADA S WONDERLAND Science Grade 5 1 GRADE 5 IN-SCHOOL PREPARATION MEETING THE

More information

4. Compare the tangential speed of a car to the tangential speed of the middle of a spoke. Explain!

4. Compare the tangential speed of a car to the tangential speed of the middle of a spoke. Explain! QUALTATVE QUESTONS Highland Fling 1. Observe the Highland Fling as it is just starting to spin. How are the rider s bodies oriented relative to the spokes of the ride? 2. Continue to watch the ride as

More information

Physics Fun: THE INVESTIGATIONS! The Study of Mechanics, Energy, Force & Motion

Physics Fun: THE INVESTIGATIONS! The Study of Mechanics, Energy, Force & Motion Physics Fun: THE INVESTIGATIONS! The Study of Mechanics, Energy, Force & Motion Investigation #1: Zoomerang Coaster Mass of each car = 1500 pounds or 680 kg Number of cars = 7 Maximum Height = 36.91 meters

More information

Nickelodeon Universe Ride Science

Nickelodeon Universe Ride Science Nickelodeon Universe Ride Science ACTIVITY PACKET TABLE OF CONTENTS Learning Goals and Objectives p. 2 Guide Book to Ride Science Activities @ Nickelodeon Universe p. 3 Avatar AirBender activities/questions

More information

2015 Physics Day Workbook

2015 Physics Day Workbook 2015 Physics Day Workbook Table Of Contents Fun Facts Page 3 Park Map Page 6 Ride Statistics Page 7-8 Formulas Page 9 Making a G Meter Page 10 Physics on the Bus Page 11 The Yankee Cannonball Page 12 Pirata

More information

GRAVITY ROLLER COASTER LAUNCH COASTER

GRAVITY ROLLER COASTER LAUNCH COASTER GRAVITY ROLLER COASTER LAUNCH COASTER ROLLER COASTER CLASSIFICATIONS LOOPING COASTERS: characterized by an acceleration of up to 4,5 g; the maximum speed is 15 m/s and the track is designed with a mixed

More information

MIDDLE SCHOOL STEM ADVENTURES

MIDDLE SCHOOL STEM ADVENTURES MIDDLE SCHOOL STEM ADVENTURES IN PARTNERSHIP WITH: 2017 EDITION WRITTEN BY: TOM PATERSON NJSPECIALEVENTS@SIXFLAGS.COM FOLLOW US - @SFGRADVENTURE JOIN THE CONVERSATION: #PHYSICSDAY1 SIX FLAGS GREAT ADVENTURE

More information

Roller Coaster Information Sheet Please Print Roller Coasters will NOT be allowed on the stage for judging unless they are accompanied by this sheet School Name: Teacher Name: Coaster Name: Members of

More information

Amusement Park Physics. Amusement Park. Physics. PHYSICS and SCIENCE DAY 2010 Physics 11/12

Amusement Park Physics. Amusement Park. Physics. PHYSICS and SCIENCE DAY 2010 Physics 11/12 Amusement Park Physics PHYSICS and SCIENCE DAY 2010 Physics 11/12 These educational materials were created by Science Plus. Illustrations, typesetting and layout by Robert Browne Graphics. For more information

More information

IMPETUS: Engineering Workbook Model Roller Coaster Competition

IMPETUS: Engineering Workbook Model Roller Coaster Competition IMPETUS: Engineering Workbook Model Roller Coaster Competition School and Team Information This information can be completed at any time before the roller coaster competition School Name: Coach s Name:

More information

DISNEY STUDENT CHALLENGE BY DINETH, JAEHOEN AND YANNI

DISNEY STUDENT CHALLENGE BY DINETH, JAEHOEN AND YANNI DISNEY STUDENT CHALLENGE BY DINETH, JAEHOEN AND YANNI OUR RIDE- THE BUZZATRON We have decided to base our rollercoaster on the theme Toy Story specifically Buzz light year. We think this to be a good financial

More information

2. In terms of forces, explain why Batman The Ride uses a long shallow climb up the first incline instead of a short steep one.

2. In terms of forces, explain why Batman The Ride uses a long shallow climb up the first incline instead of a short steep one. QUALITATIVE QUESTIONS Batman The Ride 1. When you enter Batman The Ride, you walk the first 7.2 meters vertically to get on. What is the advantage to Six Flags St. Louis of having you do this? 2. In terms

More information

o " tar get v moving moving &

o  tar get v moving moving & Introduction You have a summer job at Amtrak with a group examining the crash between two trains. Your supervisor wants you to calculate the results of two different cases. The first is a perfectly inelastic

More information

ABSTRACT TIES TO CURRICULUM TIME REQUIREMENT

ABSTRACT TIES TO CURRICULUM TIME REQUIREMENT ABSTRACT This lesson uses the thrill of amusement park attractions to teach students how to analyze principles of motion. The Calculator Based Laboratory helps students record and analyze acceleration

More information

ACADEMIC ADVENTURES SCIENCE AND MATHEMATICS MIDDLE SCHOOL / HIGH SCHOOL

ACADEMIC ADVENTURES SCIENCE AND MATHEMATICS MIDDLE SCHOOL / HIGH SCHOOL ACADEMIC ADVENTURES SCIENCE AND MATHEMATICS MIDDLE SCHOOL / HIGH SCHOOL INDEX WELCOME PAGE 3 INTRODUCTION PAGE 4 HELPGFUL TERMS AND FORMULAS PAGE 5 Activity One: Potential and Kinetic Energy PAGE 6 Kingda

More information

Amusement Park Physics. Amusement Park PHYSICS. PHYSICS and SCIENCE DAY 2013 Science 10

Amusement Park Physics. Amusement Park PHYSICS. PHYSICS and SCIENCE DAY 2013 Science 10 Amusement Park PHYSICS PHYSICS and SCIENCE DAY 2013 Science 10 These educational materials were created by Science Plus. Illustrations, typesetting and layout by Robert Browne Graphics. For more information

More information

Physics and Astronomy Night At Elitch Gardens

Physics and Astronomy Night At Elitch Gardens Physics and Astronomy Night At Elitch Gardens This curriculum book is developed by: Accelerate into your future in science! www.du.edu/physastron Welcome to Physics and Astronomy Night at Elitch Gardens!

More information

GRADE 11 PHYSICS TABLE OF CONTENTS. In-School Preparation page 2. Amusement Ride Activities - Graphing page 22

GRADE 11 PHYSICS TABLE OF CONTENTS. In-School Preparation page 2. Amusement Ride Activities - Graphing page 22 GRADE 11 PHYSICS TABLE OF CONTENTS In-School Preparation page 2 Amusement Ride Activities - Graphing page 22 Amusement Ride Activities Energy page 71 Other Activities page 107 Answer Key page 112 CANADA

More information

5. Compare the tangential speed of a car to the tangential speed of the middle of a spoke. Explain!

5. Compare the tangential speed of a car to the tangential speed of the middle of a spoke. Explain! Name: QUALTATVE QUESTONS Partner: 1. As riders sit in the stationary Highland Fling, at what angle are the rider s bodies oriented relative to the spokes of the ride? (A diagram might help) Teacher: Highland

More information

Mechanics of Frisbee Throwing

Mechanics of Frisbee Throwing 16-741 Mechanics of Manipulation Project Report Mechanics of Frisbee Throwing Debidatta Dwibedi (debidatd) Senthil Purushwalkam (spurushw) Introduction Frisbee is a popular recreational and professional

More information

Safety Analysis of the Winch Launch

Safety Analysis of the Winch Launch Safety Analysis of the Winch Launch Trevor Hills British Gliding Association and Lasham Gliding Society ts.hills@talk21.com Presented at the XXVIII OSTIV Congress, Eskilstuna, Sweden, 8-15 June 26 Abstract

More information

Forces on a Parachute

Forces on a Parachute Forces on a Parachute Throw your parachute in the air. Record 3 observations or questions about your parachute: 1. 2. 3. Read: Playing with Parachutes 1. What does the word Parachute mean? 2. When did

More information

ì<(sk$m)=becbfg< +^-Ä-U-Ä-U

ì<(sk$m)=becbfg< +^-Ä-U-Ä-U Reader Thank You, Sir Isaac Newton! Genre Build Background Access Content Extend Language Expository Nonfiction Scientific Discovery Force and Motion Roller Coasters Labels and Captions Definitions Fact

More information

STEM Club Challenge 3

STEM Club Challenge 3 STEM Club Challenge 3 Design, build, animate, and derive a final cost of materials for a Rising, Tilting, Centrifugal Force Ride similar to Der Wirbelwind Swing Ride at Busch Gardens Williamsburg. Centrifugal

More information

2018 Cloverdale Citrus Fair Ride Descriptions

2018 Cloverdale Citrus Fair Ride Descriptions 2018 Cloverdale Citrus Fair Ride Descriptions midway. Super Shot Drop Tower The world-class Super Shot Drop Tower is one of Butler Amusements most popular rides. Unlike any other ride on our midway, the

More information

Table Of Contents. Copyright Canobie Lake Park

Table Of Contents. Copyright Canobie Lake Park Table Of Contents Fun Facts Page 3 Park Map Page 6 Formulas & Conversions Page 7 Energized Page 8 Loop the Loop Page 10 Spinning Out of Control Page 12 How Far Is That Again Page 15 Inanimate Animation

More information

Wingsuit Design and Basic Aerodynamics 2

Wingsuit Design and Basic Aerodynamics 2 WINGSUIT DESIGN AND BASIC AERODYNAMICS 2 In this article I would like to expand on the basic aerodynamics principles I covered in my first article (Wingsuit Flying Aerodynamics 1) and to explain the challenges

More information

Amusement Park Physics. Amusement Park PHYSICS. PHYSICS and SCIENCE DAY 2018 Physics 11/12

Amusement Park Physics. Amusement Park PHYSICS. PHYSICS and SCIENCE DAY 2018 Physics 11/12 Amusement Park PHYSICS PHYSICS and SCIENCE DAY 2018 Physics 11/12 These educational materials were created by Science Plus. Illustrations, typesetting and layout by Robert Browne Graphics. For more information

More information

Eric Collins Ted Dorris Drew Ellis Will Glass. The Polar Express. 12/06/08 Reviewed by Eric Collins, Ted Dorris, Drew Ellis, and Will Glass

Eric Collins Ted Dorris Drew Ellis Will Glass. The Polar Express. 12/06/08 Reviewed by Eric Collins, Ted Dorris, Drew Ellis, and Will Glass Eric Collins Ted Dorris Drew Ellis Will Glass The Polar Express 12/06/08 Reviewed by Eric Collins, Ted Dorris, Drew Ellis, and Will Glass Abstract The objective of our team s project was to construct a

More information

TEXTBOOK QUESTIONS AND THEIR ANSWERS. Q.1. Why a vehicle slows down when brakes are applied?

TEXTBOOK QUESTIONS AND THEIR ANSWERS. Q.1. Why a vehicle slows down when brakes are applied? 12 FRICTION TEXTBOOK QUESTIONS AND THEIR ANSWERS Q.1. Why a vehicle slows down when brakes are applied? Ans. A vehicle slows down when brakes are applied because the shoes of the brakes rub against the

More information

Kings Dominion Coaster Mania Building Contest 2017

Kings Dominion Coaster Mania Building Contest 2017 Updated 1/28/17 1 Kings Dominion Coaster Mania Building Contest 2017 Kings Dominion is proud to introduce our Annual Roller Coaster Building Contest in conjunction with the 2017 Education Days to be held

More information

Activity 2 let Your Dreams Soar

Activity 2 let Your Dreams Soar the law of Conservation of Energy, which states that energy is neither created nor destroyed; it is simply transferred or changes from one form to another. Explain that catapults also demonstrate Newton

More information

Tests. Amusement Park Physics With a NASA Twist

Tests. Amusement Park Physics With a NASA Twist ests 125 126 Pretest 1. rue or alse. Astronauts experience weightlessness because they are high enough where rue or alse. here are microgravity research facilities at NASA where scientists drop rue or

More information

Table of Contents. page 4. Student Resources. page 6. Park Map. Ride Packet Student Worksheets. pages Group Activities.

Table of Contents. page 4. Student Resources. page 6. Park Map. Ride Packet Student Worksheets. pages Group Activities. 10:10 AM L HIGH SCHOO K O O B K R O TW STUDEN 5 19, 26 1, 2 1, 5 Y A,M APRIL 28 Table of Contents page 4 Student Resources page 6 Park Map pages 7 45 pages 46 49 Group Activities pages 50 52 Rainy Day

More information

MULTIPLE CHOICE QUESTIONS. Fig. 12.1

MULTIPLE CHOICE QUESTIONS. Fig. 12.1 12 Friction 68 MULTIPLE CHOICE QUESTIONS 1. Whenever the surfaces in contact tend to move or move with respect to each other, the force of friction comes into play (a) only if the objects are solid. (b)

More information

University of Colorado, Colorado Springs Mechanical & Aerospace Engineering Department. MAE 4415/5415 Project #1 Glider Design. Due: March 11, 2008

University of Colorado, Colorado Springs Mechanical & Aerospace Engineering Department. MAE 4415/5415 Project #1 Glider Design. Due: March 11, 2008 University of Colorado, Colorado Springs Mechanical & Aerospace Engineering Department MAE 4415/5415 Project #1 Glider Design Due: March 11, 2008 MATERIALS Each student glider must be able to be made from

More information

Classical physics experiments in the amusement park

Classical physics experiments in the amusement park Classical physics experiments in the amusement park FEATURES www.iop.org/journals/physed Sara Bagge and Ann-Marie Pendrill Physics and Engineering Physics, Göteborg University and Chalmers University of

More information

Important! Read all of these instructions before assembling or riding the glider. For questions or help please call Glide Bikes at

Important! Read all of these instructions before assembling or riding the glider. For questions or help please call Glide Bikes at Go Glider Manual Congratulations on your purchase of the Go Glider! Your glider is designed for years of nearly carefree use by your child. These instructions include how to set up your glider and maintenance

More information

Math 110 Passports to Fun Journeys At Kennywood

Math 110 Passports to Fun Journeys At Kennywood Conceived and Created by: Mike Long, Ed. D. (Math Ed.) Assistant Professor of Mathematics, Shippensburg University of PA With the Assistance of Teachers: Tina Cool, Preston High School, Kingwood WV Jodi

More information

Grade 4 TEXT INTRODUCTIONS AND PROCEDURE

Grade 4 TEXT INTRODUCTIONS AND PROCEDURE Sharing Background Knowledge: Grade 4 TEXT INTRODUCTIONS AND PROCEDURE Read the title and the text prompt. Students talk in pairs or triads. Then follow up with a whole class/group discussion. Keep the

More information

THE THRILL SEEKER S GUIDE TO EDUCATION

THE THRILL SEEKER S GUIDE TO EDUCATION KENTUCKY KINGDOM / EDUCATION IN MOTION 2 THE THRILL SEEKER S GUIDE TO EDUCATION If you ve been searching for the fastest, the biggest, and the most enlightening educational experience around, your quest

More information

Energy and Roller Coasters

Energy and Roller Coasters 2ptsec printing Name Partners in this Project: Science Number: Group # Due _In Physics Lab Notebook Period Energy and Roller Coasters My dream rollercoaster Webquest Tasks Computer Engineer: Artistic Designer:

More information

Design Challenge: Building a Roller Coaster

Design Challenge: Building a Roller Coaster Design Challenge: Building a Roller Coaster Focus: Students explore materials and tools then use the design process to build their own roller coasters. Specific Curriculum Outcomes Students will be expected

More information

May, Orientation : Saturday, April 23 PNE Hastings Room. Phone: or Fax:

May, Orientation : Saturday, April 23 PNE Hastings Room. Phone: or Fax: May, 2016 Orientation : Saturday, April 23 PNE Hastings Room Phone: 604-252-3663 or 604-252-3585 Fax: 251-7753 Email : groupsales@pne.ca The Science of Fun Science at an Amusement Park for Elementary School

More information

Whittling Chip Requirements

Whittling Chip Requirements Whittling Chip Requirements Bear Scouts may earn the privilege of carrying a pocketknife to Cub Scout functions when required and asked to do so. The objective of this award is to make scouts aware that:

More information

Toll Booth. Build a toll booth with an arm that raises and lowers. This does not need to be very large.

Toll Booth. Build a toll booth with an arm that raises and lowers. This does not need to be very large. Toll Booth Task: You must design, build, and test a toll both that has a gate arm that raises and lowers to let cars through. The toll gate arm will be operated using limit switches to detect whether or

More information

Integrated Science. 5. Working electromagnet start switch. [Must be designed so the person starting it does

Integrated Science. 5. Working electromagnet start switch. [Must be designed so the person starting it does Integrated Science 2015 Amusement Park Challenge Purpose: A land developer in Snohomish has decided to build an amusement park on farm land near the river. They have all their permits in place. Now they

More information

Developing a Functional Roller Coaster Optimizer. Ernest Lee. April 20, Abstract

Developing a Functional Roller Coaster Optimizer. Ernest Lee. April 20, Abstract Developing a Functional Roller Coaster Optimizer Josh Tsai Brigham Young University joshjtsai@gmail.com Ernest Lee Brigham Young University ernest.tylee@gmail.com April 20, 2017 Abstract Roller coasters

More information

Aim: What is the Height and Co-Height functions of a Ferris Wheel?

Aim: What is the Height and Co-Height functions of a Ferris Wheel? Do Now: Suppose a Ferris wheel has a radius of 50 feet. We will measure the height of a passenger car that starts in the 3 o clock position with respect to the horizontal line through the center of the

More information

Name: traced back to this first steel coaster.

Name: traced back to this first steel coaster. Roller Coaster History In the 1600s in Russia, the forerunners of present-day roller coasters were huge blocks of ice that were fashioned into sleds, with straw or fur on the icy seat for passenger comfort.

More information

Grade 7 - Unit 2 - ELA Model Curriculum

Grade 7 - Unit 2 - ELA Model Curriculum Grade 7 - Unit 2 - ELA Model Curriculum Version A Name: Class: Date: 1 2 1. Answer both questions 1 and 2 below. What is the main purpose of the passage? A. To argue a case B. To provide information C.

More information

Lesson 1: Rolling and moving with Science

Lesson 1: Rolling and moving with Science Question: How is science related to roller coasters? Interpret and apply Newton's three laws of motion. Describe phase transitions in terms of kinetic molecular theory Lesson 1: Rolling and moving with

More information

STEM FUTURES. Air Travel STEM. Works! Using Maths Tasks. About the Industry. About Your Task

STEM FUTURES. Air Travel STEM. Works! Using Maths Tasks. About the Industry. About Your Task STEM FUTURES Using Maths Tasks STEM Works! Air Travel In these activities, you work in the aviation industry. You will need to use your mathematical skills to help your team solve some problems. About

More information

AERONAUTICS An Educator s Guide with Activities in Science, Mathematics, and Technology Education National Aeronautics and Space Administration

AERONAUTICS An Educator s Guide with Activities in Science, Mathematics, and Technology Education National Aeronautics and Space Administration AERONAUTICS An Educator s Guide with Activities in Science, Mathematics, and Technology Education National Aeronautics and Space Administration Objective The students will: Learn how to change the flight

More information

4. Compare the tangential speed of a car to the tangential speed of the middle of a spoke. Explain!

4. Compare the tangential speed of a car to the tangential speed of the middle of a spoke. Explain! QUALTATE QUESTONS Highland Fling 1. Observe the Highland Fling as it is just starting to spin. How are the rider s bodies oriented relative to the spokes of the ride? 2. Continue to watch the ride as it

More information

Table of Contents. page 4. Student Resources. page 6. Park Map. Ride Packet Student Worksheets. pages Group Activities.

Table of Contents. page 4. Student Resources. page 6. Park Map. Ride Packet Student Worksheets. pages Group Activities. 10:10 AM L O O H C S E L D MID K O O B K R O TW STUDEN 5 19, 26 1, 2 1, 5 Y A,M APRIL 28 Table of Contents page 4 Student Resources page 6 Park Map pages 7 38 pages 39 43 Group Activities pages 44 45 Rainy

More information

Alternative Designs Report Joshua s Jumper

Alternative Designs Report Joshua s Jumper Alternative Designs Report Joshua s Jumper By Elyssa Polomski, Michael Ballintyn, and Tianyi Xu Team # 21 Client: Joshua Bouchard Client Contact: Sue and Ron Bouchard, soupanony@aol.com, (508) 823-6113

More information

Scale Drawing of Roller Coaster

Scale Drawing of Roller Coaster Scale Drawing of Roller Coaster Worksheet #4 Name Directions: Below is a scale drawing of a portion of the Millennium Force, a roller coaster located in Cedar Point Amusement Park in Ohio. Answer the questions

More information

CASM electric cylinders The modular electric cylinder system

CASM electric cylinders The modular electric cylinder system CASM electric cylinders The modular electric cylinder system CASM electric cylinders are ideally suited to performing fast and powerful linear movements. Unlike pneumatic or hydraulic cylinders, CASM electric

More information

Summer Challenge Program 2015

Summer Challenge Program 2015 Summer Challenge Program 2015 Course Title: Feel Those G s: The Physics of Roller Coasters Instructors: Jeff Armentr and Burton Barrager Physics/Astronomy Building, Room 156 Course Description Almost everyone

More information

GET MOVING A LEGOLAND Malaysia Educational Resource Guide

GET MOVING A LEGOLAND Malaysia Educational Resource Guide GET MOVING A LEGOLAND Malaysia Educational Resource Guide Table of Contents Welcome/About Get Moving: Objectives Page 1 Background Information What is Force? Page 2 Before and After Visit: Minds-On Investigations

More information

DRY SLIDES - ICE MOUNTAIN - CURVED SLIDES - CHILDREN SLIDES - SNOW PLAY GROUND - MINI ICE SLIDE CONSULTANCIES

DRY SLIDES - ICE MOUNTAIN - CURVED SLIDES - CHILDREN SLIDES - SNOW PLAY GROUND - MINI ICE SLIDE CONSULTANCIES - ICE MOUNTAIN - CURVED SLIDES - CHILDREN SLIDES - SNOW PLAY GROUND - MINI ICE SLIDE CONSULTANCIES - FUN FACTORY PAKISTAN - KANDY CITY CENTRE SRI-LANKA - LUNEUR, ROME - URMIA PROJECT I.E. PARK INTERNATIONAL

More information

THE THRILL SEEKER S GUIDE TO EDUCATION

THE THRILL SEEKER S GUIDE TO EDUCATION THE THRILL SEEKER S GUIDE TO EDUCATION If you ve been searching for the fastest, the biggest, and the most enlightening educational experience around, your quest is over! Kentucky Kingdom provides a unique

More information

Zip Line Classroom Activity

Zip Line Classroom Activity Zip Line Classroom Activity The Classroom Activity introduces students to the context of a performance task, so they are not disadvantaged in demonstrating the skills the task intends to assess. Contextual

More information

Weight Arm Moment. Empty Airplane Front Seats. Back Seats. Fuel. Baggage TOTAL

Weight Arm Moment. Empty Airplane Front Seats. Back Seats. Fuel. Baggage TOTAL Homework Exercise to prepare for Class #9. Answer these on notebook paper then correct or improve your answers (using another color) by referring to the answer sheet. 1. What is the term for the reference

More information

Important! You need to print out the 2 page worksheet you find by clicking on this link and take it with you to your lab session.

Important! You need to print out the 2 page worksheet you find by clicking on this link and take it with you to your lab session. 1 PHY 123 Lab 5 - Linear Momentum (updated 10/9/13) In this lab you will investigate the conservation of momentum in one-dimensional collisions of objects. You will do this for both elastic and inelastic

More information

Model Roller Coaster Contest 2017

Model Roller Coaster Contest 2017 Model Roller Coaster Contest 2017 California s Great America is proud to offer you and your group, entry into this year s Model Roller Coaster Contest. To find out how you and your school can enter this

More information

An Analysis of the Restraint Sufficiency of the Happijac Tie-Down System for Truck- Mounted Slide-In Campers

An Analysis of the Restraint Sufficiency of the Happijac Tie-Down System for Truck- Mounted Slide-In Campers Product Assessment Report October 2002 An Analysis of the Restraint Sufficiency of the Happijac Tie-Down System for Truck- Mounted Slide-In Campers Spencer P. Magleby, PhD Associate Professor of Mechanical

More information

Natural Selection and Ring Gliders

Natural Selection and Ring Gliders Natural Selection and s Introduction: The purpose this lab is to use paper aircraft to model the process natural selection. A basic understanding aircraft design is not necessary to complete this lab but

More information

DOWN MANUAL. Aeros Ltd. St. Post-Volinskaya, 5 Kiev, UKRAINE

DOWN MANUAL. Aeros Ltd. St. Post-Volinskaya, 5 Kiev, UKRAINE DOWN HG & PG rescue parachute system MANUAL Aeros Ltd. St. Post-Volinskaya, 5 Kiev, 03061 UKRAINE Tel. +(380 44) 455 41 20 Fax. +(380 44) 455 41 16 E-mail: aerosint@aerosint.kiev.ua http://www.aeros.com.ua

More information