Vereniging van Nederlandse Verkeersvliegers. Dutch Air Line Pilots Association

Size: px
Start display at page:

Download "Vereniging van Nederlandse Verkeersvliegers. Dutch Air Line Pilots Association"

Transcription

1 Vereniging van Nederlandse Verkeersvliegers Dutch Air Line Pilots Association Position Paper 07 / 4 Performance Optimization Revision: 19 th September 2007 This position paper represents the opinion of the Dutch Air Line Pilots Association based on IFALPA / ECA policy, legislation, scientific research and manufacturer guidelines and recommendations.

2 Issue Software based takeoff performance tools together with the use of digital performance information allow for the optimisation of takeoff performance by using first principles calculation methods, optimum flap settings and optimised takeoff speeds and may result in the removal of (additional) margins present in a paper based methodology. General VNV recognizes the economic benefits resulting from the use of software based takeoff performance tools such as LINTOP or EFB based tools and the optimisation of takeoff performance. There are however several concerns which in the opinion of VNV should be addressed prior to introduction of the optimised performance in order to reduce the likelihood of potentially unsafe situations. These concerns are addressed below and concern training aspects, the availability of sufficient and clear information to the flight crew and technical considerations. Training and Standards With the introduction of optimum flap settings the flight crew will be confronted with considerably different aircraft behaviour during one of the most critical flight phases as compared to the current takeoff techniques. Notably the handling of an engine failure during takeoff identifies the need for sufficient (simulator) training and the availability of high quality background information and clear and concise instructions and regulatory background embedded in the Operations Manuals. An overview of the complexity of takeoff performance optimisation is presented in Appendix 1. Flight Crew Responsibility The flight crew is directly responsible for the safe execution of the takeoff manoeuvre. Full optimisation of takeoff performance may remove margins previously present and there are situations when full optimisation of takeoff performance may not be desirable. In order to be able to take full account of all information available prior to takeoff, such as runway state, weather, technical status of the aircraft, NOTAMS, etc. the flight crew should have a complete picture of the (performance) limitations and specifics of that particular takeoff. This is in line with the lessons learned from many takeoff accidents and incidents and identified in the FAA Takeoff Safety Training Aid and various accident and incident analyses. Key factors are knowledge of regulatory rules and certification criteria, knowledge of takeoff performance and the effects of airplane configuration and technical status as well as knowledge of available safety margins. Clearly, the presentation of takeoff speeds as function of input parameters without further information is insufficient. VNV is of the opinion that flight crews should be aware of the limitations affecting the particular takeoff by having available the weight margins with respect to the performance limitations (structural, field length, climb, obstacle, tire speed and brake energy). This has the additional advantage of contributing to the detection of possibly incorrect values. The sole option to use full rated takeoff thrust in case of doubt is a highly undesirable solution as this will not provide the required insight in available margins or limitations of that particular takeoff procedure.

3 Technical Considerations Data Integrity The capability to detect erroneous calculations or data corruption is clearly reduced by the calculation of point performance by a remote system. Additionally the possibility to detect errors by performing an independent check is removed. The optimisation process itself may lead to performance data (takeoff speeds and limit weights) quite different from values obtained through a (balanced) paper methodology. VNV is of the opinion that sufficiently robust measures should be in force to guarantee: Database and software integrity (NOTAMS / virus protection / firewall / encryption) Algorithm reliability (BITE / spike testing) End-user checks (e.g. actual weight versus performance limit weights, optimised takeoff speeds in relation to balanced takeoff speeds) Back-up procedures in case of system failures History has shown that there is a clear need for procedures and information to aid in the detection of erroneous takeoff performance data as outlined in a review by the Canadian Transport Safety Board (see Appendix 2). Field Performance Range of V1 Whenever the actual takeoff weight is below the field limited takeoff weight (balanced) the application of performance optimisation potentially allows a further reduction of takeoff thrust setting (increased assumed temperature or different derated thrust setting) or a variation of V 1 within the certified range or a combination thereof. Whenever the takeoff performance is not limited by field length or when the maximum allowed reduction in takeoff thrust is reached VNV would favour the adoption of a reduced V 1 policy. Clearway / Stopway Current certification standards and implementation of digital performance information allow the inclusion of clearway credit on wet runways for the engine-out case for both the (100%) and the /300 (50%). Depending on the particular conditions this may result in the scheduling of lift-off very near the end of the runway threshold in case of an engine failure. Following concerns from IFALPA both FAA and JAA agreed this situation to be unsafe and the certification requirements were subsequently amended to deny this credit. For non-jaa certified aircraft a work-around procedure may be available by applying the slippery runway (wet/good) corrections to the dry takeoff performance, which could also result in engine-out clearway credit on wet runways. This option is not supported by VNV. Stopways usually do not have the same quality standard as the runway itself and enforcing maintenance criteria for friction levels comparable with the runway itself are often difficult to apply or are not applied at all. Certain stopways may become very slippery when wet or have a considerably reduced loading capacity when wet. It is IFALPA policy that stopways and clearways

4 should be considered as an additional safety margin. In any case VNV is of the opinion that the decision to include or exclude stopways or clearways in the takeoff performance calculation should be made by the flight crew. RESA Certain airfields have adopted the policy of reducing the declared Accelerate-Stop Distance Available in order to accommodate the ICAO requirements for Runway End Safety Areas (RESA). This has resulted in Takeoff Run Available (TORA) values in excess of ASDA values, which is clearly not in line with the JAA definition of a stopway. VNV/IFALPA does not support the use of RESA for inclusion in takeoff performance calculations and as such requires a thorough check of airport declared distances in order to avoid this problem. Grooved / Porous Friction Course (PFC) Performance Credit Both the 777EFB and the 737NG AFM-DPI provide for takeoff performance based on wet skidresistant surfaces. This option is based on the performance credit available in the FAR 25 Amendment 92 and JAR 25 Change 15 certification requirements for grooved or Porous Friction Course (PFC) runways and is based on accepted (conservative) performance levels of these runway surfaces equal to approximately 70% of the dry equivalent and will because of the reverse credit and reduced screen height result in roughly dry takeoff performance however with appropriate V 1 reduction and penalties for inoperative reversers. In order to stimulate the use of grooved and PFC runways IFALPA/VNV is in favour of using this option provided it is verified that the runways are indeed maintained in accordance with FAA AC 150/ C or its equivalent. Typically this would mean that maintenance friction measurements satisfy the Design Objective Level (DOL) for Grooved/PFC runways and that rubber removal frequencies are sufficiently high. VNV is of the opinion that the current runway state reporting of EHAM (dry/wet) and dispatch guidelines for EHRD do not satisfy the above certification requirements and do not reflect the actual runway capability, as they are mainly based on whether or not water levels will rise above the texture depth. This is not an accepted or representative definition of dry runways but merely an indication when runway flooding will occur or when standing water will be present. Furthermore, no scientific research is available for these runways that indicates equivalent dry braking action is retained for aircraft when moisture is present on the runway. The underlying research for EHAM indicates braking action good is available, which is the equivalent of a wet runway and not of a dry runway (See VNV-VTZ Position Paper 07/1). VNV is of the opinion that performance credit in accordance with the above certification requirements (70% dry) is the only accepted method and might lead to a broader acceptance among flight crews as opposed to the dispatch rule currently applied to EHRD. In the end the takeoff performance credit would be available for all wet runway departures from EHAM and might result in an overall larger profit without compromising safety. Takeoff Obstacle Clearance Currently field performance is based either on a standard or non-standard engine failure procedure. Whenever an airport is located within high terrain with an engine failure procedure over relatively flat terrain and a SID deviation point relatively short after takeoff, fully optimised performance may prove destructive to climb out performance once the SID deviation point is passed in case of an

5 engine failure. This clearly shows the need for a presentation of performance margins to the flight crew and the possibility to adapt the performance parameters. JAR-OPS 1.495(f) states: An operator shall establish contingency procedures to satisfy the requirements of JAR-OPS and to provide a safe route, avoiding obstacles, to enable the aeroplane to either comply with the enroute requirements of JAR-OPS 1.500, or land at either the aerodrome of departure or at a takeoff alternate aerodrome. Due to the absence of sufficiently accurate obstacle charts (Type B/C, which some states refuse to publish because of liability) and limited calculation resources, airlines may not always be able to fully comply with this requirement. However, with the advent of more advanced tools, the responsibility of the airline may shift towards providing more alternative routings. In any case responsibility to provide a safe routing in case of an engine failure clearly does not stop with the final takeoff segment of an engine failure procedure. NOTAM Information The presence of NOTAMs with revised obstacle heights or new obstacles is a commonality in day-today operations. With the full optimisation of takeoff performance it is therefore essential that flight crews have the ability to check whether a certain obstacle is included in the performance calculation and/or have the ability to include revised or new obstacle information in the performance calculation themselves. Other Considerations Despite the possibility of performance optimisation certain margins remain available such as the difference between gross and net performance for obstacle clearance criteria, a maximum thrust reduction of 25% relative to rated takeoff thrust and in case of use of the assumed temperature method for takeoff thrust reduction a stop margin arising from the True Airspeed (TAS) effect. By using an assumed temperature in excess of ambient air temperature, the takeoff performance is based on higher groundspeeds than those actually encountered during the takeoff and as such will lead to an additional stop margin which will become higher with increasing difference between ambient air temperature and assumed temperature. This effect can be quantified and the presentation of this additional stop margin might justify a fully optimised performance calculation.

6 Appendix 1: Background Information The Boeing Approach Flight Test Paper AFM BTOPS Book Building MTOPS AFM-DPI BTM Real-Time Dispatch TOPAZ MTOPS Airplane AFM-DPI BTM BTOPS MTOPS SCAP TOPAZ Airplane Flight Manual Digital Performance Information Digital Flight Manual with a graphical interface based on PC. Core calculation software is shared with operational (SCAP) software via BTM and BLM. Regulatory software program used to calculate takeoff, enroute and landing performance Boeing Takeoff Module SCAP manufacturer module used to calculate takeoff operational performance based on AFM-DPI system software. Boeing Takeoff Performance Subroutine SCAP manufacturer module used to calculate takeoff operational paper AFM-based performance. McDonnell-Douglas Takeoff Analysis Subroutine SCAP manufacturer module used to calculate takeoff operational performance from paper AFM-based databases or softwarebased databases. Standard Computerized Airplane Performance Takeoff and Landing interface specifications (as published by IATA). TakeOff Performance for AirlineZ Digital flight manual performance with a PC based menu interface. Core calculation software is shared with the operational (SCAP) software via MTOPS. Regulatory software program used to calculate takeoff performance. Source: Boeing Flight Operations Engineering Due to the possibility of reduced margins (no graphical limitations or margins), the ability to solve more complex dispatch problems and the use of updated methods, single point calculation using AFM-DPI/TOPAZ based real-time dispatch tools provides for maximum performance. This may result in increased performance limited weights or deeper reduced thrust with obvious commercial benefits. General Takeoff Performance Limitations In general takeoff performance is limited by the following requirements: Field Length Requirements with optional inclusion of clearway, stopway Climb Requirements: 1 st segment, 2 nd segment and final segment, normally limited by 2 nd segment (gear up, takeoff flap setting) climb gradient requirements Obstacle Requirements: Net Flight Path must clear all obstacles by 35 ft. The Net Flight Path is the Gross Flight Path reduced by a prescribed reduction according to FAR/JAR/CS 25 certification requirements (e.g. 0.8% for 737) Tire Speed Limit Brake Energy Limit

7 Range of V1 The general approach adopted by Boeing is the calculation of a Corrected Runway Length which generalizes WAT-effects (Weight-Altitude-Temperature). The corrected Engine Inoperative Takeoff Distance is the actual runway length corrected for specific conditions such as the presence and use of a clearway, the effects of runway slope, wind, anti-ice, engine bleed, MEL-items, line-up distance, etc. The corrected Engine Inoperative Accelerate-Stop Distance is the actual runway length corrected for the presence and use of a stopway, the effects of runway slope, wind, anti-ice, engine bleed, MELitems, line-up distance, etc. The actual takeoff weight determines the takeoff safety speed V 2 and the rotation speed V R is determined from V 2 as a function of altitude and temperature. Whenever field length limited the maximum performance is obtained for the balanced takeoff where the corrected Engine Inoperative Takeoff Distance is equal to the corrected Engine Inoperative Accelerate-Stop Distance, resulting in a standard V 1 /V R -ratio. When the actual takeoff weight is lower than the field length limited takeoff weight a reduced or derated takeoff thrust setting or a range of V 1 speeds or a combination of both may be available for which all legal field length requirements are satisfied, the minimum value resulting in a stop margin, the maximum value resulting in a go margin. Other requirements to be satisfied are a minimum V 1 equal to the minimum control speed V MCG and a maximum V 1 equal to the rotation speed V R in combination with tire speed and brake energy limits: Source: Boeing Flight Operations Engineering Stopway Credit ICAO Annex 14: Stopway: A defined rectangular area on the ground at the end of take-off run available prepared as a suitable area in which an aircraft can be stopped in the case of an abandoned take off. A stopway shall have the same width as the runway with which it is associated.

8 A stopway should be prepared or constructed so as to be capable, in the event of an abandoned take-off, of supporting the aeroplane which the stopway is intended to serve without inducing structural damage to the aeroplane. The surface of a paved stopway should be so constructed as to provide a good coefficient of friction to be compatible with that of the associated runway when the stopway is wet. Stopway credit is straightforward and can be included directly as accelerate-stop distance available (ASDA). According to JAR-OPS the accelerate-stop distance available is equal to the takeoff run available plus the length of the stopway if declared available by the appropriate authority. There have however been cases where the declared distances were not in agreement with the above definition because of the inclusion of Runway End Safety Areas (RESA). Clearway Credit ICAO Annex 14: Clearway: A defined rectangular area on the ground or water under the control of the appropriate authority selected or prepared as a suitable area over which an aeroplane may make a portion of its initial climb to a specified height. The origin of a clearway should be at the end of the take-off run available. The length of a clearway should not exceed half the length of the take-off run available. A clearway should extend laterally to a distance of at least 75 m on each side of the extended centre line of the runway. The ground in a clearway should not project above a plane having an upward slope of 1.25 per cent. Any equipment or installation required for air navigation purposes which must be located on a clearway and which would endanger an aircraft in the air shall be frangible and mounted as low as possible. Existing non-visual aids need not meet this requirement until January 1 st, Additionally in JAR/CS Definitions threshold lights may protrude above the plane if their height above the end of the runway is 0.66 m (26 inches) or less and if they are located to each side of the runway. The amount of clearway credit is expressed as the amount of the takeoff flare distance (from lift-off to the screen height) which is traversed over the clearway. Generally clearway credit is expressed as a percentage. FAA: FAR 25 Amendment 0 (effective 1 st February 1965) allows a 50% clearway credit for the flare distance between lift-off and 35 ft. This amendment does not address runway state (dry only) and typically threshold clearance may be as low as 13 feet. With the introduction of runway state accountability (dry/wet) in FAR 25 Amendment 92 (effective 20 th March 1998) it was recognized that the combination of a clearway with the 15-foot screen height for wet runways could result in a minimum height over the end of the runway of near zero (lift-off very near to the end of the runway), if clearway credit were to be permitted for wet runways in the same manner that it is currently permitted for dry runways. Both IFALPA and FAA considered this situation unacceptable. The possible presence of standing water or other types of precipitation (e.g. slush or snow) and

9 numerous operational factors (e.g. late or slow rotation to lift-off attitude) emphasize the need to provide more of a safety margin than would be present if lift-off were permitted so near the end of the runway. As a result clearway credit for wet runways was denied as of this amendment. JAA: Wet runway accountability was introduced in JAR 25 as early as Change 2 (effective 9 th April 1976) by requiring data to be determined to aid the selection of a V 1 for a wet runway. ACJ 25X133 required the presentation of a lowest value of V1 with adequate aerodynamic controllability, resulting in a height of 15 ft at the end of the takeoff distance and resulting in lift-off within the specified takeoff run applicable to a dry runway with clearway credit, effectively allowing full clearway credit for the engine-out case on wet runways. JAR 25 Change 5 (effective 1 st January 1979) introduced a CAA-UK national variant with a more elaborate approach to wet runway performance, allowing 100% clearway credit for the engine-out case on wet runways. With Orange Paper 25/88/1 (effective 18 th October 1988) national variants were deleted and a new paragraph 25X1591 was introduced addressing wet and contaminated runways. A similar approach as the original UK requirements was adopted, allowing 100% clearway credit for the wet runway engine-out case, although using a V STOP and a V GO speed instead of a single V 1 speed. Orange Paper 25/88/1 was included in JAR 25 Change 13 (effective 5 th October 1989). The equivalent of FAA NPRM 93-8 being JAA NPA 25BDG244 was adopted as part of JAR 25 Change 15 (effective 1 st October 2000) which denies clearway credit for the engine-out case on a wet runway. In summary the following differences in clearway credit can be distinguished: Requirement AEO dry OEI dry AEO wet OEI wet FAR 25/0 50% 50% N/A N/A FAR 25/92 50% 50% 50% 0% JAR 25/1 50% 50% N/A N/A JAR 25/2 50% 50% 50% 100% JAR 25/5 UK 50% 50% 50% 100% JAR 25/13 50% 50% 50% 100% JAR 25/15 50% 50% 50% 0% Current JAR-OPS rules do not have additional retroactive requirements. DNPA-OPS 47 developed by the JAA Performance Subcommittee however intends to retroactively prohibit clearway credit for the engine-out case on wet runways. According to Boeing the following OEI wet runway clearway credit is available: : 100% /300: 50% (halfway between the IFALPA position and applicable requirement) ER/200LR: 0% 737PG: Work around by applying Slippery Performance (Good/Wet) 737NG: 0% (certified including JAA NPA 25BDG244)

10 Improved Climb By increasing the climb speed climb out performance may be increased at the expense of field performance thereby optimising the performance limited weight when limited by climb requirements. Increased takeoff speed should still comply with brake energy and tire speed requirements: Source: Boeing Flight Operations Engineering

11 Appendix 2: Takeoff Accidents resulting from inadequate performance MK Airlines Limited Boeing SF On 14 October 2004, an MK Airlines Limited Boeing SF was being operated as a nonscheduled international cargo flight from Halifax, Nova Scotia, to Zaragoza, Spain. At about 0654 coordinated universal time, MK Airlines Limited Flight 1602 attempted to take off from Runway 24 at the Halifax International Airport. The aircraft overshot the end of the runway for a distance of 825 feet, became airborne for 325 feet and then struck an earthen berm. The aircraft's tail section broke away from the fuselage, and the aircraft remained in the air for another 1200 feet before it struck terrain and burst into flames. The aircraft was destroyed by impact forces and a severe postcrash fire. All seven crew members suffered fatal injuries. In this accident, the flight crew's take-off performance calculations resulted in an error that remained undetected until the aircraft reached a point where the crew's response was too late to avert the accident. Source: Transportation Safety Board of Canada, Accident Report A04H0004 Other Accidents; a review by the Transportation Safety Board of Canada A review of large (above 5700 kg), turbine-powered aircraft accident and incident data has shown that there have been at least 12 major occurrences where take-off performance was significantly different from scheduled performance. Four of the aircraft involved were destroyed and there were 297 fatalities. Several of these occurrences involved flight crews that attempted a take-off using incorrect performance data, and then did not recognize the inadequate take-off performance of the aircraft. There were other accidents where the take-off performance has been inadequate because of mechanical failures, incorrect aircraft configuration or incorrect instrument indications. These occurrences were not isolated to any particular aircraft type, commercial operation or geographic area. Underlying most of these occurrences were one or both of the following safety issues: The failure or absence of procedural defences to detect an error in the take-off performance data; and The failure of the crews to recognize abnormal performance once the take-off had commenced. The following are some representative accidents taken from the data: On 12 March 2003, a Boeing suffered a tail strike on take-off in Auckland, New Zealand, and became airborne just above the stall speed (New Zealand Investigation ). The aft pressure bulkhead was severely damaged, but the crew managed to land safely. The cause of the tail strike was a result of the flight crew entering a take-off weight

12 100 tonnes less than the actual weight into the flight management system, resulting in low take-off speeds being generated. There was no crew cross-checking of the speeds. On 11 March 2003, a Boeing in Johannesburg had a tail strike on take-off (NTSB report DCA03WA031 refers). The flight engineer had entered the zero fuel weight of kg instead of the take-off weight of kg into the hand-held performance computer, and then transferred the incorrect computed take-off speeds onto the take-off cards. On 14 June 2002, an Airbus A330 had a tail strike on take-off in Frankfurt, Germany, because incorrect take-off data were entered into the flight management system (TSB report A02F0069 refers). The tail strike was undetected by the flight crew, but they were notified by air traffic services during the climb-out. The aircraft sustained substantial structural damage to the underside of the tail. On 28 December 2001, a B cargo aircraft had a tail strike on take-off in Anchorage, Alaska, and sustained substantial damage (NTSB report ANC02LA008 refers). The crew did not account for the weight of the additional fuel (about kg) taken on board in Anchorage, and inadvertently used the same performance cards that were used for the previous landing. The crew members were unaware that the tail had struck the runway until after arrival at their destination. On 13 January 1982, a Boeing was on a scheduled flight from Washington, DC, to Fort Lauderdale, Florida. During take-off, the EPRs were set for 2.04, and on the take-off run, anomalous engine instrument readings were noted; the captain elected to continue the take-off. Approximately 2000 feet and 15 seconds past the normal take-off point, the aircraft became airborne. The aircraft initially climbed, but failed to accelerate. The stall warning stick shaker activated shortly after take-off and continued until the aircraft settled, hit the 14th Street Bridge and several vehicles, then plunged into the frozen Potomac River. The investigation revealed that the engine inlet pressure probes became blocked with ice, resulting in high EPR indications. Of the 79 persons on board, 74 perished, and there were four ground fatalities. From at least as far back as 1972, there have been safety recommendations and initiatives to ensure that crews have a reliable on-board method of detecting abnormal take-off performance, particularly in situations where performance is less than required or expected. Unfortunately, there is still not a reliable in-cockpit system available for crews to detect and react to abnormal take-off performance in a timely manner. Source: Transportation Safety Board of Canada

USE OF TAKEOFF CHARTS [B737]

USE OF TAKEOFF CHARTS [B737] USE OF TAKEOFF CHARTS [B737] 1. Introducton This documentation presents an example of takeoff performance calculations for Boeing 737. It is called self-dispatch, primarily used by airline crew if that

More information

CESSNA CITATION IIB PW JT15D-4 INTRODUCTION. Runway Analysis provides the means to determine maximum allowable takeoff and landing weights based upon:

CESSNA CITATION IIB PW JT15D-4 INTRODUCTION. Runway Analysis provides the means to determine maximum allowable takeoff and landing weights based upon: CESSNA CITATION IIB PW JT15D-4 INTRODUCTION Runway Analysis provides the means to determine maximum allowable takeoff and landing weights based upon: Airport characteristics consisting of airport elevation,

More information

CHAPTER 5 AEROPLANE PERFORMANCE OPERATING LIMITATIONS

CHAPTER 5 AEROPLANE PERFORMANCE OPERATING LIMITATIONS CHAP 5-1 CHAPTER 5 PERFORMANCE OPERATING LIMITATIONS 5.1 GENERAL 5.1.1 Aeroplanes shall be operated in accordance with a comprehensive and detailed code of performance established by the Civil Aviation

More information

IATA Air Carrier Self Audit Checklist Analysis Questionnaire

IATA Air Carrier Self Audit Checklist Analysis Questionnaire IATA Air Carrier Self Audit Checklist Analysis Questionnaire Purpose Runway Excursion Prevention Air Carrier Self Audit Checklist The Flight Safety Foundation (FSF) Reducing the Risk of Runway Excursions

More information

FUEL MANAGEMENT FOR COMMERCIAL TRANSPORT

FUEL MANAGEMENT FOR COMMERCIAL TRANSPORT FUEL MANAGEMENT FOR COMMERCIAL TRANSPORT 1. Introduction An aeroplane shall carry a sufficient amount of usable fuel to complete the planned flight safely and to allow for deviation from the planned operation.

More information

FIJI ISLANDS AERONAUTICAL INFORMATION CIRCULAR

FIJI ISLANDS AERONAUTICAL INFORMATION CIRCULAR ANR 31 REFERS FIJI ISLANDS AERONAUTICAL INFORMATION CIRCULAR Civil Aviation Authority of Fiji Private Bag (NAP0354), Nadi Airport Fiji Tel: (679) 6721 555; Fax (679) 6721 500 Website: www.caafi.org.fj

More information

UNITED KINGDOM AERONAUTICAL INFORMATION CIRCULAR

UNITED KINGDOM AERONAUTICAL INFORMATION CIRCULAR UNITED KINGDOM AERONAUTICAL INFORMATION CIRCULAR AIC 127/2006 (Pink 110) 7 December NATS Limited Aeronautical Information Service Control Tower Building, London Heathrow Airport Hounslow, Middlesex TW6

More information

TAKEOFF SAFETY ISSUE 2-11/2001. Flight Operations Support & Line Assistance

TAKEOFF SAFETY ISSUE 2-11/2001. Flight Operations Support & Line Assistance TAKEOFF SAFETY T R A I N I N G A I D ISSUE 2-11/2001 Flight Operations Support & Line Assistance Flight Operations Support & Line Assistance Introduction The purpose of this brochure is to provide the

More information

Operational Procedures

Operational Procedures CHAPTER four OPERATIONAL PROCEDURES Contents ESTABLISHMENT OF PROCEDURES............................ 29 PERFORMANCE AND OPERATING LIMITATIONS................... 29 MASS LIMITATIONS......................................

More information

Helicopter Performance. Performance Class 1. Jim Lyons

Helicopter Performance. Performance Class 1. Jim Lyons Helicopter Performance Performance Class 1 Jim Lyons What is Performance Class 1 Content of Presentation Elements of a Category A Take-off Procedure (CS/FAR 29) PC1 Take-off Requirements PC1

More information

Advisory Circular (AC)

Advisory Circular (AC) Advisory Circular (AC) Certification of Transport Category Aeroplanes On Narrow Runways File No. 5009-6-525 AC No. 525-014 RDIMS No. 528471-V3 Issue No. 01 Issuing Branch Aircraft Certification Effective

More information

RNP In Daily Operations

RNP In Daily Operations RNP In Daily Operations Article 2 Paul Malott WestJet It was a dark and stormy night in the mountainous terrain of Kelowna, British Columbia. Suddenly, the noise of a jet airplane on final pierced the

More information

Braking Action Measurement

Braking Action Measurement Braking Action Measurement Alistair Scott: BAE SYSTEMS - Regional Aircraft European Regions Airline Association - Icing Workshop 21st November 2002, EUROCONTROL, Luxembourg Introduction My Background Discussion

More information

Worldwide, the likelihood

Worldwide, the likelihood BY RICK DARBY Slippery When Wet Grooved runways help, but a variety of other safety measures also could reduce wet-runway overruns. Worldwide, the likelihood of a jet or large turboprop overrunning the

More information

GCAA ADVISORY CIRCULAR

GCAA ADVISORY CIRCULAR GUYANA CIVIL AVIATION AUTHORITY 73 High Street Kingston Georgetown GUYANA TEL. NOs: (592) 225 6822, 225 0778, 227 8111 FAX: (592) 225 6800 E-mail: director-general@gcaa-gy.org GCAA ADVISORY CIRCULAR AERODROME

More information

Weight and Balance User Guide

Weight and Balance User Guide Weight and Balance User Guide Selecting the Weight and Balance tab brings up the Departure and Destination screen, used for initiating the process for a standalone WB report. Select the tail to be used

More information

INTERNATIONAL CIVIL AVIATION ORGANIZATION FIRST MEETING OF DIRECTORS OF CIVIL AVIATION OF THE CARIBBEAN REGION (CAR/DCA/1)

INTERNATIONAL CIVIL AVIATION ORGANIZATION FIRST MEETING OF DIRECTORS OF CIVIL AVIATION OF THE CARIBBEAN REGION (CAR/DCA/1) CAR DCA/1 20/09/02 INTERNATIONAL CIVIL AVIATION ORGANIZATION FIRST MEETING OF DIRECTORS OF CIVIL AVIATION OF THE CARIBBEAN REGION (CAR/DCA/1) (Grand Cayman, Cayman Islands, 8-11 October 2002) Agenda Item

More information

Helicopter Performance. Performance Class 2 - The Concept. Jim Lyons

Helicopter Performance. Performance Class 2 - The Concept. Jim Lyons Helicopter Performance Performance Class 2 - The Concept Jim Lyons Aim of the Presentation Establishes the derivation of PC2 from the ICAO Standard and explains the necessary extensions Examines the basic

More information

A Human Factors Approach to Preventing Tail Strikes. Captain Vern Jeremica Senior Safety Pilot Boeing Commercial Airplanes May 2004

A Human Factors Approach to Preventing Tail Strikes. Captain Vern Jeremica Senior Safety Pilot Boeing Commercial Airplanes May 2004 A Human Factors Approach to Preventing Tail Strikes Captain Vern Jeremica Senior Safety Pilot Boeing Commercial Airplanes May 2004 1 Presentation Overview Tail strike statistics as of 2003 Engineering/procedural

More information

EXTENDED-RANGE TWIN-ENGINE OPERATIONS

EXTENDED-RANGE TWIN-ENGINE OPERATIONS EXTENDED-RANGE TWIN-ENGINE OPERATIONS 1. Introduction Extended range operations by aircraft with two turbine power units (ETOPS or EROPS) are sometimes necessary to permit twin engine aircraft to operate

More information

TEXT OF AMENDMENT 36 TO THE INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES OPERATION OF AIRCRAFT

TEXT OF AMENDMENT 36 TO THE INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES OPERATION OF AIRCRAFT 3 TEXT OF AMENDMENT 36 TO THE INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES OPERATION OF AIRCRAFT ANNEX 6 TO THE CONVENTION ON INTERNATIONAL CIVIL AVIATION PART I INTERNATIONAL COMMERCIAL AIR TRANSPORT

More information

Runway Analysis User Guide

Runway Analysis User Guide Runway Analysis User Guide The Runway Analysis & Weight and Balance functions are accessed by selecting Runway Analysis & Weight and Balance from the Flight Plan drop down menu. Select the tail to be used

More information

TYPICAL ERRORS. Making a keystroke or transposition

TYPICAL ERRORS. Making a keystroke or transposition F light crews consider many factors when determining correct takeoff reference speeds, or V speeds, for a particular airplane on a particular runway. These include gross weight (GW); center of gravity;

More information

Advisory Circular. Regulations for Terrain Awareness Warning System

Advisory Circular. Regulations for Terrain Awareness Warning System Advisory Circular Subject: Regulations for Terrain Awareness Warning System Issuing Office: Standards Document No.: AC 600-003 File Classification No.: Z 5000-34 Issue No.: 03 RDIMS No.: 10464059-V5 Effective

More information

July 2008 COMPANY INDOCTRINATION TRAINING 1.0 PURPOSE

July 2008 COMPANY INDOCTRINATION TRAINING 1.0 PURPOSE ADVISORY CIRCULAR CAA-AC-OPS009A July 2008 COMPANY INDOCTRINATION TRAINING 1.0 PURPOSE This Advisory Circular (AC) specifies the objectives and content of company indoctrination curriculum segments applicable

More information

General Information Applicant Name and Address: Tel./Fax/ Contact Person Name/Tel./Fax/

General Information Applicant Name and Address: Tel./Fax/  Contact Person Name/Tel./Fax/ Application for steep approach approval Completion of form: Each relevant box should be completed with a tick ( ) or a (X). Form must be completed by referring to a document of applicant's documentation

More information

NOISE ABATEMENT PROCEDURES

NOISE ABATEMENT PROCEDURES 1. Introduction NOISE ABATEMENT PROCEDURES Many airports today impose restrictions on aircraft movements. These include: Curfew time Maximum permitted noise levels Noise surcharges Engine run up restrictions

More information

Runway Length Analysis Prescott Municipal Airport

Runway Length Analysis Prescott Municipal Airport APPENDIX 2 Runway Length Analysis Prescott Municipal Airport May 11, 2009 Version 2 (draft) Table of Contents Introduction... 1-1 Section 1 Purpose & Need... 1-2 Section 2 Design Standards...1-3 Section

More information

SECURITY OVERSIGHT AGENCY June 2017 ALL WEATHER (CAT II, CAT III AND LOW VISIBILITY) OPERATIONS

SECURITY OVERSIGHT AGENCY June 2017 ALL WEATHER (CAT II, CAT III AND LOW VISIBILITY) OPERATIONS ADVISORY CIRCULAR CIVIL AVIATION SAFETY AND CAA:AC-OPS052 SECURITY OVERSIGHT AGENCY June 2017 1.0 PURPOSE ALL WEATHER (CAT II, CAT III AND LOW VISIBILITY) OPERATIONS This Order provides guidance to the

More information

Figure 3.1. Foreign Airport Assessment Aid

Figure 3.1. Foreign Airport Assessment Aid 01 oauu-t.d Foreign Airport Assessment Aid: Date of Assessment: Assessment Conducted by: Airport ICAO/IATA Identification: Hours of Operation: Figure 3.1. Foreign Airport Assessment Aid [ Airport Name:

More information

CAA MMEL POLICY ITEM: GEN-7

CAA MMEL POLICY ITEM: GEN-7 With the withdrawal of CAA MMELs and CAA MMEL Supplements in July 2014, a number of MMEL items contained within those CAA documents which are associated with UK certification requirements need to be retained.

More information

SECURITY OVERSIGHT AGENCY May 2017 EXTENDED DIVERSION TIME OPERATIONS (EDTO)

SECURITY OVERSIGHT AGENCY May 2017 EXTENDED DIVERSION TIME OPERATIONS (EDTO) ADVISORY CIRCULAR CIVIL AVIATION SAFETY AND CAA-AC-OPS031A SECURITY OVERSIGHT AGENCY May 2017 1.0 PURPOSE EXTENDED DIVERSION TIME OPERATIONS (EDTO) 1.1 This advisory circular (AC) provides guidance to

More information

Recommendation to Include Specific Safety Requirements in Geophysical Survey Contracts & Proposed Survey Contract Annex

Recommendation to Include Specific Safety Requirements in Geophysical Survey Contracts & Proposed Survey Contract Annex INTERNATIONAL AIRBORNE GEOPHYSICS SAFETY ASSOCIATION Recommendation to Include Specific Safety Requirements in Geophysical Survey Contracts & Proposed Survey Contract Annex Notice to Users This document

More information

EFRAS. The Performance Tool from Condor. 06 September 2011

EFRAS. The Performance Tool from Condor. 06 September 2011 EFRAS The Performance Tool from Condor 06 September 2011 EFRAS 15 years of continuous development and experience: 1994 - Start of development 1995 - Start of Test-Phases with increasing number of Condor

More information

Contaminated Runways. Getting it stopped perfectly with imperfect information on an imperfect surface

Contaminated Runways. Getting it stopped perfectly with imperfect information on an imperfect surface Contaminated Runways Getting it stopped perfectly with imperfect information on an imperfect surface On December 8, 2005, Southwest Airlines Flight 1248 ran off the departure end of Chicago Midway International

More information

FLIGHT OPERATIONS PANEL (FLTOPSP)

FLIGHT OPERATIONS PANEL (FLTOPSP) International Civil Aviation Organization FLTOPSP/1-WP/3 7/10/14 WORKING PAPER FLIGHT OPERATIONS PANEL (FLTOPSP) FIRST MEETING Montréal, 27 to 31 October 2014 Agenda Item 4: Active work programme items

More information

CIVIL AVIATION AUTHORITY, PAKISTAN OPERATIONAL CONTROL SYSTEMS CONTENTS

CIVIL AVIATION AUTHORITY, PAKISTAN OPERATIONAL CONTROL SYSTEMS CONTENTS CIVIL AVIATION AUTHORITY, PAKISTAN Air Navigation Order No. : 91-0004 Date : 7 th April, 2010 Issue : Two OPERATIONAL CONTROL SYSTEMS CONTENTS SECTIONS 1. Authority 2. Purpose 3. Scope 4. Operational Control

More information

Misinterpreted Engine Situation

Misinterpreted Engine Situation Misinterpreted Engine Situation Morrisville, NC December 13, 1994 Engine self-recovery light misinterpreted. Control lost on attempted goaround. Fatal crash. The aircraft crashed while executing an ILS

More information

ADVISORY CIRCULAR ON CALCULATION OF DECLARED DISTANCES

ADVISORY CIRCULAR ON CALCULATION OF DECLARED DISTANCES Page 1 of 6 1. PURPOSE This Advisory circular (AC) provides guidance to operators to calculated declared distances at aerodrome for safe use of runway and promulgation of aeronautical data to the aeronautical

More information

IAGSA Survey Contract Annex

IAGSA Survey Contract Annex Notice to Users This document will be expanded and revised from time to time without notice. Users may obtain the most current version from IAGSA s web site at: www.iagsa.ca The Safety Policy Manual referred

More information

AAIB Bulletin: 1/2017 G-EZFJ EW/C2016/04/01. None. 57 years

AAIB Bulletin: 1/2017 G-EZFJ EW/C2016/04/01. None. 57 years SERIOUS INCIDENT Aircraft Type and Registration: No & Type of Engines: Airbus A319-111, G-EZFJ 2 CFM CFM56-5B5/3 turbofan engines Year of Manufacture: 2009 (Serial no: 4040) Date & Time (UTC): Location:

More information

Landing on Slippery Runways. BOEING is a trademark of Boeing Management Company. Copyright 2007 Boeing. All rights reserved.

Landing on Slippery Runways. BOEING is a trademark of Boeing Management Company. Copyright 2007 Boeing. All rights reserved. Landing on Slippery Runways WARNING: Export Controlled This document contains technical data whose export is restricted by the Export Administration Act of 1979, as amended, Title 50, U.S.C.; App. 2401,

More information

FAA Requirements for Engine-out Procedures and Obstacle Clearance

FAA Requirements for Engine-out Procedures and Obstacle Clearance FAA Requirements for Engine-out Procedures and Obstacle Clearance Presentation to: CAAC Engine-out Procedures Seminar Name: Chuck Friesenhahn Date: 11/29/2005 Flight Standards Senior Advisor, Advanced

More information

All-Weather Operations Training Programme

All-Weather Operations Training Programme GOVERNMENT OF INDIA CIVIL AVIATION DEPARTMENT DIRECTOR GENERAL OF CIVIL AVIATION OC NO 3 OF 2014 Date: OPERATIONS CIRCULAR Subject: All-Weather Operations Training Programme 1. INTRODUCTION In order to

More information

SECTION B AIRWORTHINESS CERTIFICATION

SECTION B AIRWORTHINESS CERTIFICATION SECTION B AIRWORTHINESS CERTIFICATION 1 2 NEPALESE CIVIL AIRWORTHINESS REQUIREMENTS SECTION B AIRWORTHINESS CERTIFICATION CHAPTER B.1 ISSUE 4 JANUARY 2009 1. INTRODUCTION TYPE CERTIFICATES 1.1 Before a

More information

Flight Operations Briefing Notes

Flight Operations Briefing Notes Flight Operations Briefing Notes I Introduction Strict adherence to suitable standard operating procedures (SOPs) and associated normal checklists is a major contribution to preventing and reducing incidents

More information

SUBPART C Operator certification and supervision

SUBPART C Operator certification and supervision An AOC specifies the: SUBPART C Operator certification and supervision Appendix 1 to OPS 1.175 Contents and conditions of the Air Operator Certificate (a) Name and location (principal place of business)

More information

CESSNA SECTION 5 PERFORMANCE

CESSNA SECTION 5 PERFORMANCE CESSNA SECTION 5 TABLE OF CONTENTS Page Introduction............................................5-3 Use of Performance Charts................................5-3 Sample Problem........................................5-4

More information

FORT LAUDERDALE-HOLLYWOOD INTERNATIONAL AIRPORT ENVIRONMENTAL IMPACT STATEMENT DRAFT

FORT LAUDERDALE-HOLLYWOOD INTERNATIONAL AIRPORT ENVIRONMENTAL IMPACT STATEMENT DRAFT D.3 RUNWAY LENGTH ANALYSIS Appendix D Purpose and Need THIS PAGE INTENTIONALLY LEFT BLANK Appendix D Purpose and Need APPENDIX D.3 AIRFIELD GEOMETRIC REQUIREMENTS This information provided in this appendix

More information

Terms of Reference for rulemaking task RMT.0704

Terms of Reference for rulemaking task RMT.0704 Terms of Reference for rulemaking task Runway Surface Condition Assessment and Reporting ISSUE 1 Issue/rationale The International Civil Aviation Organization (ICAO), through State Letters AN 4/1.2.26-16/19

More information

VFR GENERAL AVIATION FLIGHT OPERATION

VFR GENERAL AVIATION FLIGHT OPERATION 1. Introduction VFR GENERAL AVIATION FLIGHT OPERATION The general aviation flight operation is the operation of an aircraft other than a commercial air transport operation. The commercial air transport

More information

Operational Evaluation Board Report

Operational Evaluation Board Report EUROPEAN AVIATION SAFETY AGENCY Operational Evaluation Board Report Dassault Aviation Mystère Falcon 900 Report, Rev 2 28 June 2012 European Aviation Safety Agency Postfach 10 12 53 D-50452 Köln Germany

More information

TANZANIA CIVIL AVIATION AUTHORITY AIR NAVIGATION SERVICES INSPECTORATE. Title: CONSTRUCTION OF VISUAL AND INSTRUMENT FLIGHT PROCEDURES

TANZANIA CIVIL AVIATION AUTHORITY AIR NAVIGATION SERVICES INSPECTORATE. Title: CONSTRUCTION OF VISUAL AND INSTRUMENT FLIGHT PROCEDURES Page 1 of 8 1. PURPOSE 1.1. This Advisory Circular provides guidance to personnel involved in construction of instrument and visual flight procedures for publication in the Aeronautical Information Publication.

More information

APPENDIX X: RUNWAY LENGTH ANALYSIS

APPENDIX X: RUNWAY LENGTH ANALYSIS APPENDIX X: RUNWAY LENGTH ANALYSIS Purpose For this Airport Master Plan study, the FAA has requested a runway length analysis to be completed to current FAA AC 150/5325-4B, Runway Length Requirements for

More information

Agenda Item 5: Group Discussion How Could We Prevent Runway Excursions (Risks and Lessons Learned)

Agenda Item 5: Group Discussion How Could We Prevent Runway Excursions (Risks and Lessons Learned) Agenda Item 5: Group Discussion How Could We Prevent Runway Excursions (Risks and Lessons Learned) Animations in this presentation are extracted from website: Courtesy: National Transportation Safety Board

More information

Flight Operations Support

Flight Operations Support Flight Operations Support Cover and this image: Cobham BAe 146 on approach to the unpaved runway at Kambalda mine, 200 miles east of Perth, Australia. (Courtesy of Cobham Aviation Services) Flight Operations

More information

THE CIVIL AVIATION ACT (No. 21 of 2013 THE CIVIL AVIATION (OPERATION OF AIRCRAFT) (AMENDMENT) REGULATIONS, 2015

THE CIVIL AVIATION ACT (No. 21 of 2013 THE CIVIL AVIATION (OPERATION OF AIRCRAFT) (AMENDMENT) REGULATIONS, 2015 LEGAL NOTICE. THE CIVIL AVIATION ACT (No. 21 of 2013 THE CIVIL AVIATION (OPERATION OF AIRCRAFT) (AMENDMENT) REGULATIONS, 2015 Citation GN. No. of 20 Citation 1. These Regulations may be cited as the Civil

More information

Consideration will be given to other methods of compliance which may be presented to the Authority.

Consideration will be given to other methods of compliance which may be presented to the Authority. Advisory Circular AC 139-10 Revision 1 Control of Obstacles 27 April 2007 General Civil Aviation Authority advisory circulars (AC) contain information about standards, practices and procedures that the

More information

When discussing landing distance, two categories must

When discussing landing distance, two categories must APPROACH-AND-LANDING ACCIDENT REDUCTION TOOL KIT fsf alar briefing note 8.3 Landing Distances When discussing landing distance, two categories must be considered: Actual landing distance is the distance

More information

ATM 4 Airspace & Procedure Design

ATM 4 Airspace & Procedure Design ATM 4 Airspace & Procedure Design 1. Introduction 1.1. The proper planning and design of routes, holding patterns, airspace structure and ATC sectorisation in both terminal and en-route airspace can be

More information

Consideration will be given to other methods of compliance which may be presented to the Authority.

Consideration will be given to other methods of compliance which may be presented to the Authority. Advisory Circular AC 139-11 Revision 2 Use of day-vfr aerodromes 27 April 2007 General Civil Aviation Authority advisory circulars (AC) contain information about standards, practices and procedures that

More information

Terms of Reference for a rulemaking task. Implementation of Evidence-Based Training within the European regulatory framework RMT.0696 ISSUE

Terms of Reference for a rulemaking task. Implementation of Evidence-Based Training within the European regulatory framework RMT.0696 ISSUE Terms of Reference for a rulemaking task Implementation of Evidence-Based Training within the European regulatory framework ISSUE 1 3.9.2015 Applicability Process map Affected regulations and decisions:

More information

USE OF LANDING CHARTS [B737]

USE OF LANDING CHARTS [B737] USE OF LANDING CHARTS [B737] 1. Introducton The landing stage of a flight is usually the path from 50 ft above the landing threshold and the place where an airplane comes to a complete stop. The 50 ft

More information

CRUISE TABLE OF CONTENTS

CRUISE TABLE OF CONTENTS CRUISE FLIGHT 2-1 CRUISE TABLE OF CONTENTS SUBJECT PAGE CRUISE FLIGHT... 3 FUEL PLANNING SCHEMATIC 737-600... 5 FUEL PLANNING SCHEMATIC 737-700... 6 FUEL PLANNING SCHEMATIC 737-800... 7 FUEL PLANNING SCHEMATIC

More information

Sample Regulations for Water Aerodromes

Sample Regulations for Water Aerodromes Sample Regulations for Water Aerodromes First Edition (unedited version) March 2015 Notice to users: This document is an unedited version which is made available to the public for convenience. Its content

More information

Airplane takeoff speeds are designed to ensure the liftoff speed does not exceed the tire speed rating.

Airplane takeoff speeds are designed to ensure the liftoff speed does not exceed the tire speed rating. Airplane takeoff speeds are designed to ensure the liftoff speed does not exceed the tire speed rating. 14 aero quarterly qtr_02 09 Exceeding Tire Speed Rating During Takeoff Airplane tires are designed

More information

SUPPLEMENT OCTOBER CITATION PERFORMANCE CALCULATOR (CPCalc) MODEL AND ON REVISION 8 68FM-S17-08

SUPPLEMENT OCTOBER CITATION PERFORMANCE CALCULATOR (CPCalc) MODEL AND ON REVISION 8 68FM-S17-08 MODEL 680 680-0001 AND ON CITATION PERFORMANCE CALCULATOR (CPCalc) COPYRIGHT 2005 CESSNA AIRCRAFT COMPANY WICHITA, KANSAS, USA 68FM-S17-08 REVISION 8 17 OCTOBER 2005 7 MARCH 2014 U.S. S17-1 SECTION V -

More information

Aerodrome Design Manual

Aerodrome Design Manual Doc 9157 AN/901 Aerodrome Design Manual Part 1 Runways Approved by the Secretary General and published under his authority Third Edition 2006 International Civil Aviation Organization Doc 9157 AN/901

More information

AERODROME OPERATING MINIMA

AERODROME OPERATING MINIMA Title: Determination of Aerodrome Operating Minima Page 1 of 8 AERODROME OPERATING MINIMA 1. PURPOSE 1.1 The purpose of this Advisory Circular is to provide methods to be adopted by operators in determining

More information

Appendix 1(a) to JCAR-FCL 1.055

Appendix 1(a) to JCAR-FCL 1.055 Flying Training Organizations for Pilot licenses and Ratings This guide gives the requirements for the issue, revalidation and variation of the approval of FTOs Introduction 1. A Flying Training Organization

More information

Advisory Circular (AC)

Advisory Circular (AC) Advisory Circular (AC) Flight Test Considerations For The Approval Of The Design Of Aircraft Modifications File No. 5009-6-513 AC No. 513-003 RDIMS No. 528350-V3 Issue No. 01 Issuing Branch Aircraft Certification

More information

EUROCAE ED-250: ROAAS MOPS

EUROCAE ED-250: ROAAS MOPS EUROCAE ED-250: ROAAS MOPS Runway Overrun Alerting and Awareness System Minimum Operational Performance Specifications GRSS 2017 Lima, Peru Pierre GEORGES Safety Strategy, DGT, Dassault Aviation WG-101

More information

Part 121, Amendment 26. Air Operations Large Aeroplanes. Docket 14/CAR/3

Part 121, Amendment 26. Air Operations Large Aeroplanes. Docket 14/CAR/3 Docket 14/CAR/3 Contents Rule objective... 3 Extent of consultation... 3 Summary of submissions... 3 Examination of submissions... 3 Insertion of Amendments... 3 Effective date of rule... 4 Availability

More information

Available Technologies. Session 4 Presentation 1

Available Technologies. Session 4 Presentation 1 Available Technologies Session 4 Presentation 1 Runway Incursions, Confusion and Excursions are a leading cause of Aviation Accidents Runway Incursion & Confusion Runway Incursion & Confusion Eliminating

More information

Introduction to ROPS. Runway Overrun Prevention System. Presented by: Jerome JOURNADE ROPS Technical Manager

Introduction to ROPS. Runway Overrun Prevention System. Presented by: Jerome JOURNADE ROPS Technical Manager Presented by: Jerome JOURNADE ROPS Technical Manager Introduction to ROPS Runway Overrun Prevention System Agenda 1. What is ROPS? Why is it needed 2. Overview of ROPS design 3. ROPS, a performance based

More information

Glass Cockpits in General Aviation Aircraft. Consequences for training and simulators. Fred Abbink

Glass Cockpits in General Aviation Aircraft. Consequences for training and simulators. Fred Abbink Glass Cockpits in General Aviation Aircraft. Consequences for training and simulators Fred Abbink Content Development of Air transport cockpits, avionics, automation and safety Pre World War 2 Post World

More information

SUPERSEDED. [Docket No. FAA ; Directorate Identifier 2008-NM-061-AD; Amendment ; AD ]

SUPERSEDED. [Docket No. FAA ; Directorate Identifier 2008-NM-061-AD; Amendment ; AD ] [Federal Register: April 23, 2008 (Volume 73, Number 79)] [Rules and Regulations] [Page 21811-21813] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr23ap08-2] DEPARTMENT

More information

Overview ICAO Standards and Recommended Practices for Aerodrome Safeguarding

Overview ICAO Standards and Recommended Practices for Aerodrome Safeguarding Overview ICAO Standards and Recommended Practices for Aerodrome Safeguarding References The Convention on International Civil Aviation (Chicago Convention) ICAO SARPS Annex 14 Vol. I, 7 th Edition, July

More information

June 9th, 2011 Runway Excursions at Landing The n 1 Global Air Safety Issue Can We Reduce this Risk Through Innovative Avionics?

June 9th, 2011 Runway Excursions at Landing The n 1 Global Air Safety Issue Can We Reduce this Risk Through Innovative Avionics? Runway Excursions at Landing The n 1 Global Air Safety Issue Can We Reduce this Risk Through Innovative Avionics? Presented by Bill Bozin VP, Safety and Technical Affairs, Airbus Americas Agenda Safety

More information

OPS 1 Standard Operating Procedures

OPS 1 Standard Operating Procedures OPS 1 Standard Operating Procedures 1. Introduction 1.1. Adherence to standard operating procedures (SOPs) is an effective method of preventing level busts, including those that lead to controlled flight

More information

ONE-ENGINE INOPERATIVE FLIGHT

ONE-ENGINE INOPERATIVE FLIGHT ONE-ENGINE INOPERATIVE FLIGHT 1. Introduction When an engine fails in flight in a turbojet, there are many things the pilots need to be aware of to fly the airplane safely and get it on the ground. This

More information

Office of Research and Engineering Safety Study Report: Introduction of Glass Cockpit Avionics into Light Aircraft Study Overview Joseph Kolly

Office of Research and Engineering Safety Study Report: Introduction of Glass Cockpit Avionics into Light Aircraft Study Overview Joseph Kolly Office of Research and Engineering Safety Study Report: Introduction of Glass Cockpit Avionics into Light Aircraft Study Overview Joseph Kolly NTSB Research Mandate Title 49 United States Code, Chapter

More information

SACAA INTERIM REPORT ON AIRLINK GEORGE AIRPORT ACCIDENT

SACAA INTERIM REPORT ON AIRLINK GEORGE AIRPORT ACCIDENT SACAA INTERIM REPORT ON AIRLINK GEORGE AIRPORT ACCIDENT Midrand - Following an Airlink accident that took place at the George Airport on 07 December 2009, the South African Civil Aviation Authority s Accident

More information

Jet Transport Airplane Performance - Briefing For Business Aviation Pilots & Operators

Jet Transport Airplane Performance - Briefing For Business Aviation Pilots & Operators Jet Transport Airplane Performance - Briefing For Business Aviation Pilots & Operators Presented to: By: Date: NBAA 2013 Convention Transport Airplane Performance Planning Working Group 22 October 2013

More information

PLUME RISE ASSESSMENTS

PLUME RISE ASSESSMENTS Advisory Circular AC 139-5(1) NOVEMBER 2012 PLUME RISE ASSESSMENTS CONTENTS Page 1. References 1 2. Purpose 2 3. Status of this advisory circular 2 4. Acronyms 2 5. Definitions 3 6. Background 3 7. Key

More information

Terms of Reference for a rulemaking task

Terms of Reference for a rulemaking task Terms of Reference for a rulemaking task Review of aeroplane performance requirements for CAT operations RMT.0296 (OPS.008(A)) ISSUE 1 9.6.2015 Applicability Process map Affected regulations and decisions:

More information

Part 137. Agricultural Aircraft Operations. CAA Consolidation. 10 March Published by the Civil Aviation Authority of New Zealand

Part 137. Agricultural Aircraft Operations. CAA Consolidation. 10 March Published by the Civil Aviation Authority of New Zealand Part 137 CAA Consolidation 10 March 2017 Agricultural Aircraft Operations Published by the Civil Aviation Authority of New Zealand DESCRIPTION Part 137 prescribes rules, that are additional to and exceptions

More information

AIRCRAFT ACCIDENT REPORT AND EXECUTIVE SUMMARY

AIRCRAFT ACCIDENT REPORT AND EXECUTIVE SUMMARY Section/division Accident and Incident Investigations Division Form Number: CA 12-12a AIRCRAFT ACCIDENT REPORT AND EXECUTIVE SUMMARY Aircraft Registration Type of Aircraft Reference: CA18/2/3/9350 ZU-UBB

More information

March 2016 Safety Meeting

March 2016 Safety Meeting March 2016 Safety Meeting AC 61 98C Subject: Currency Requirements and Guidance for the Flight Review and Instrument Proficiency Check Date: 11/20/15 AC No: 61-98C Initiated by: AFS-800 Supercedes: AC

More information

Available Technologies. Asia / Pacific Regional Runway Safety Seminar Session 4

Available Technologies. Asia / Pacific Regional Runway Safety Seminar Session 4 Available Technologies Asia / Pacific Regional Runway Safety Seminar Session 4 Runway Incursions, Confusion and Excursions are a leading cause of Aviation Accidents Runway Incursion & Confusion Runway

More information

BACKGROUND ON SAFETY STATISTICS

BACKGROUND ON SAFETY STATISTICS 18POS06 29 August 2018 Tailwind Operations INTRODUCTION Wind and all associated characteristics such as cross- and tailwind, shear, turbulence, vortices, and gusts are significant to the execution of daily

More information

F I N A L R E P O R T ON SERIOUS INCIDENT OF THE AIRCRAFT SR-20, REGISTRATION D-ELLT, WHICH OCCURED ON MAY , AT ZADAR AIRPORT

F I N A L R E P O R T ON SERIOUS INCIDENT OF THE AIRCRAFT SR-20, REGISTRATION D-ELLT, WHICH OCCURED ON MAY , AT ZADAR AIRPORT THE REPUBLIC OF CROATIA Air, Maritime and Railway Traffic Accident Investigation Agency Air Traffic Accident Investigation Department CLASS: 343-08/17-03/03 No: 699-04/1-18-15 Zagreb, 8 th June 2018 F

More information

FAA/HSAC PART 135 SYSTEM SAFETY RISK MANAGEMENT SAFETY ELEMENT TRAINING OF FLIGHT CREWMEMBERS JOB AID Revision 1

FAA/HSAC PART 135 SYSTEM SAFETY RISK MANAGEMENT SAFETY ELEMENT TRAINING OF FLIGHT CREWMEMBERS JOB AID Revision 1 SAFETY ELEMENT 4.2.3 - TRAINING OF FLIGHT CREWMEMBERS JOB AID Revision 1 The Federal Aviation Administration (FAA) is proactively moving away from compliance based safety surveillance programs to Systems

More information

Overview ICAO Standards and Recommended Practices for Aerodrome Mapping Data reported to AIM

Overview ICAO Standards and Recommended Practices for Aerodrome Mapping Data reported to AIM Overview ICAO Standards and Recommended Practices for Aerodrome Mapping Data reported to AIM References ICAO SARPS Annex 14 Vol. I, 7 th Edition, July 2016 ICAO SARPS Annex 15, 15 th Edition, July 2016

More information

Air Operations - Medium Aeroplanes

Air Operations - Medium Aeroplanes PURSUANT to Sections 28, 29 and 30 of the Civil Aviation Act 1990 I, HARRY JAMES DUYNHOVEN, Minister for Transport Safety, HEREBY MAKE the following ordinary rules. SIGNED AT Wellington This day of 2007

More information

717 Aeroplane JAA Data Sheet

717 Aeroplane JAA Data Sheet The Following Content of this Data Sheet is Complete In Accordance With the Concurrent and Cooperative Certification Process (CCC) Working Procedure, Draft Issue 8 dated 17-May-1994 and JAA Administrative

More information

Quiet Climb. 26 AERO First-Quarter 2003 January

Quiet Climb. 26 AERO First-Quarter 2003 January Quiet Climb Boeing has developed the Quiet Climb System, an automated avionics feature for quiet procedures that involve thrust cutback after takeoff. By reducing and restoring thrust automatically, the

More information

FAR and Military Requirements

FAR and Military Requirements FAR and Military Requirements W. H. Mason Advanced Conceps from NASA TM-1998-207644 slide 1 2/19/03 FAR and MIL STD Requirements Gov t requirements dictate some of the design requirements interest is safety,

More information

CIVIL AVIATION AUTHORITY CZECH REPUBLIC

CIVIL AVIATION AUTHORITY CZECH REPUBLIC APPLICATION AND REPORT FORM ATPL, MPL, TYPE RATING, TRAINING, SKILL TEST AND PROFICIENCY CHECK AEROPLANES (A) AND HELICOPTERS (H) Applicant s last name(s): Aircraft: SE-SP: A H ME-SP: A H Applicant s first

More information